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Visualizing Causality in Mixed Reality for Manual
Task Learning: A Study
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Fig. 1: An Illustration of the concept of visualizing causality. Consider an assembly task of a cabinet. Learners can learn the
task by perceiving visualization of the steps from the MR device. In (a) learners are only shown the MR instructions of the
current step (drill the screws into the plank), while in (b) learners are shown not only the current steps but also the future
steps that are causally related (drill the screws into the plank so that it can fit into the other two planks). Our study aims to
investigate the effect of showing the causal step in MR manual task learning.

Abstract—Mixed Reality (MR) is gaining prominence in man-
ual task skill learning due to its in-situ, embodied, and immersive
experience. To teach manual tasks, current methodologies break
the task into hierarchies (tasks into subtasks) and visualize
not only the current subtasks but also the future ones that
are causally related. We investigate the impact of visualizing
causality within an MR framework on manual task skill learning.
We conducted a user study with 48 participants, experimenting
with how presenting tasks in hierarchical causality levels (no
causality, event-level, interaction-level, and gesture-level causal-
ity) affects user comprehension and performance in a complex
assembly task. The research finds that displaying all causality
levels enhances user understanding and task execution, with a
compromise of learning time. Based on the results, we further
provide design recommendations and in-depth discussions for
future manual task learning systems.

Index Terms—Mixed Reality, Skill Learning, Causality, Visu-
alization
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I. INTRODUCTION

M IXED Reality (MR) is a technology that combines the
physical and digital worlds and has been increasingly

utilized for manual task learning across various domains
such as assembly [1]–[5], machine tasks [6]–[8], and medical
training [9]–[11]. Manual task learning involves the acquisition
of skills necessary to perform activities that require hand-
eye coordination and physical manipulation. It has thus been
significantly enhanced by the introduction of MR applications
because of their immersive and realistic scenarios that allow
users to practice in a safe and realistic setting with various
modalities of instructions.

Current methodologies for manual task learning in MR pre-
dominantly focus on guiding the users through the process by
visualizing the current steps necessary to perform a particular
task [3], [7], [12]–[14]. These approaches are designed to
support the user’s learning process by accurately and quickly
guiding users through step-by-step instructions of a task.

Derived from these prior works, research pointed out that
learners can anticipate their future steps [15], [16] , connected
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to their current steps. Similarly, discussion in the psychology
community holds that human learns tasks by understanding
the causality, i.e., the cause and effect relations among the
steps that lie within the tasks [17]–[21]. Enlightened by these
findings, researchers have also explored the visualization of
causality in various methods such as pre-cueing [15], [22]–
[24] or visualizing past or future events [25], [26] in MR.

Prior works have focused on diverse applications of vi-
sualizing causality in MR and, therefore, enlightened our
discussion over the effect of visualization of causality in MR
on the human learning process, particularly in our scope, the
manual task learning process. Based on our literature reviews,
we categorize the MR visualization of causality in manual
tasks into three levels: gesture, interaction, and event. While
prior research has explored the use of MR for manual task
learning and the visualization of causality to some extent,
no systematic study has examined how different levels of
causal visualization: gesture level, interaction level, and event
level impacts learning outcomes. Specifically, there has been
no comparative analysis of these methods, leaving a critical
gap in understanding how to optimize causal visualization for
effective manual task learning in MR environments.

To this end, we are motivated to contribute to this topic,
driven by the belief that a deeper understanding of causality
is crucial for more effective manual task learning. We aim to
conduct a study to discover whether and how the visualization
of causality in MR affects the understanding of causality
in the task and consequently the manual task learning gain.
This study aims to answer the following research questions
to reveal future research directions for manual task learning
in MR: (1) Whether and how does visualizing causality
help users learn manual tasks better in MR? (2) How
different methods of causal visualization in MR helps users
in learning manual tasks effectively?

To answer these questions, we built a three-level hierarchy
for causality representation in manual tasks, deriving from
the existing psychology research on causality and human
intention [27], [28], namely event-level, interaction-level, and
gesture-level, corresponding to three levels of human-intention
and causality. Based on the derived hierarchy, our embodied
demonstrations followed four causal visualization options: no
causality, event-level causality, interaction-level causality,
and gesture-level causality, where the users are shown the cor-
responding demonstrations of manual tasks that are causally
connected to their current step.

To investigate the effects of these four options on the
learning gain in manual task learning in MR, we conducted
a two-phase study (N = 48), where we embodied the step-
by-step demonstration of the hand-object avatars in a manual
assembly task in users’ MR view while they were learning the
task with the physical components in situ. The contributions
of our papers are as follows:

• Study Design Rationale and Implementation of a
manual task learning scenario to compare four levels of
causality visualization, where no causality, event-level
causality, interaction-level causality, and gesture-level
causality are shown in the demonstration of the manual
tasks during users’ learning process.

• Quantitative and Qualitative Results showing users’
objective/subjective responses and learning gains of the
manual tasks while following different visualizations of
causality.

• Design Recommendation and In-depth Discussion
summarized from the results and future opportunity sug-
gesting promising directions that deepen the research in
manual task learning in MR.

II. RELATED WORK

A. Manual Task Learning in MR

Mixed reality (MR) integrates physical and digital worlds,
creating an environment where physical and digital objects
coexist and interact in real-time. MR is defined as a union of
Virtual Reality (VR) and Augmented Reality (AR) by [29].
MR is gaining interest as a skill acquisition technology due
to its uniquely immersive method of delivering educational
content [30]. When used as a learning platform, MR has
shown improved learner achievement, motivation, and atti-
tude towards the learning materials [31]–[33]. Furthermore,
embodied interaction, immersion, and situated learning in
MR are beneficial in pedagogical contexts [30], [34]–[36] by
enhancing learners’ spatial abilities [37], enhancing high-level
critical thinking [38], and reducing the time and cognitive
load [39].

These benefits have motivated researchers to investigate and
develop MR-based manual-task learning tools and methods.
MR naturally supports spatially-aware instructions for inter-
acting with the physical environment [6]. Therefore, many
task learning methods in MR provide the learner with various
designs of spatially-aware, step-by-step instructions by text
[40]–[42], numerical values [43], [44], 3D symbolic visual
annotations [45]–[48], and 3D animation of the interactive
objects [49]–[52].

Step-by-step instructions by text, annotation, or 3D ani-
mation merely explain what to do to the learners, failing to
emphasize how to do it. One method for teaching learners how
is by revealing temporal information of position, orientation,
and the affordances of the objects along with temporal motion
and gesture of the human hands [3], [7], [12]–[14]. Showing
concurrent demonstration as guidance in MR to the manual
task learners is the most common methodology in existing
literature, across diverse domains such as assembly [1]–[5],
machine task [6]–[8], instrument [53], physical tasks [54],
[55], beyond all. This method focuses on demonstrating the
current steps to the users to achieve step-by-step manual task
learning.

Based on this prior work, research has noticed the ability
of users to anticipate the future steps of the tasks [15], and
studied the effect of this comprehensive predicting ability [56].
The discussion was open over the effect of demonstration in
MR of future and past steps in manual task learning. We
categorize the prior works that involve visualizing cause and
effects in MR into three levels: gesture-level, interaction-level,
and event-level. Gesture-level causal visualization reveals the
details of hand-object interaction that are required for future
steps in a manual task. Such details involve the location
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and orientation of an object [15], [57], the hand pose or
location [22], or the hand pose and object pose in a hand-
object interaction holistically [58]. Interaction-level causal
visualization explains a set of multiple gestures and object
movements regarding one object [15], [57], [58]. Interactions
depict the dynamic movements of the hands and objects, and,
therefore, the temporal similarity among interactions affects
the performance of the manual task [26]. An event is a set
of interactions with different objects. Many prior works have
investigated the effect of replaying causally related past events
in MR [25], [59], [60], where sequences of past interactions
have been captured and visualized to the users to assist in
performing the current event.

Despite the coverage of prior research utilizing visualization
of causality at different levels in MR, there exists yet no
systematic research on the differences of visualizing causality
at these levels, nor the discussions over their effects on manual
task learning in MR. To this end, we aim to conduct a
study, modeling the causal understanding in manual tasks at
different levels, and provide insight into the effect of causal
understanding in manual task learning in MR to maximize the
learning gain.

B. Causality and Human Intention in Task Learning
1) Definition of Causality: There’s a rich history of philo-

sophical debate on the essence of causality. Definitions pre-
dominantly fall into two types: (1) the abstract of the progress
of the world [61], [62], and (2) the relationship between
human actions and attempts [63]–[67]. Similarly, debates
are heated over the definition of intention. Some philosophers
[68]–[72] reduce intention to beliefs and desires to act, while
others [69], [72] see intention as a belief that taking a
particular action leads to positively evaluated results [69],
[72]–[74].

Since multiple definitions of causality and intention exist,
their applicability varies across domains and scenarios. To
ground our work with psychology and philosophy theories
that better explain our motivations and framework, we follow
the definition of causality and human intention associated
with human actions. By this definition, actions are events that
are intentional [72], [75], i.e., they are caused by human
intention. The events take place necessarily in planned ways
in a task [76]–[78]. The human’s ability to understand and
replicate the planned occurrence is the key to learning a
task, and we define this planned causality as intention-driven
causality.

Although the definition above can be debated, such as the
absence of unintentional actions [79], [80] and awareness
of unintended side-effects (i.e., oblique intentions) [81], we
argue that in the task learning process, learners will only be
taught intended tasks. Thus the definitions provided serve as
a sufficiently working model.

2) Causality in Task Learning: Research in cognitive and
developmental psychology indicates the significance of under-
standing causality and intention in task learning. Humans have
been found to parse and understand actions from intentions
instead of motion from infancy [82]–[84] and early child-
hood [85]. In addition, Heyes et al. [86] state that humans can

interpret the intentions of others and generalize this knowledge
to predict their actions in novel contexts.

Causality can be inferred via probabilistic learning [17],
[18] or through one’s trials of the task [19]–[21]. However,
learning causality by observation has shown to be more
effective [87], [88]. Learners comprehend the cause and effect
of each action by observing the demonstrations of instruc-
tors/teachers [89]–[91]. Such observational causal learning
is guided by intention. When learners apply the task they
have learned, with causality in mind, they bind, extend, and
generalize the causes and effects of their actions [92].

III. DESIGN CONSIDERATION

A. Hierarchy of Causality in Task

Within the domains of Cognitive Science, Psychology,
and Neuroscience, scholars have put forth a postulation that
humans possess a tendency to segment complex tasks into
distinct groups [93], [94]. Additionally, people understand
those ongoing tasks in partonomic hierarchies [95]. Similarly,
we break the hierarchical task structure into numerous discrete
events, which can be further parsed into interactions and
subsequently into gestures. These entities — events, inter-
actions, and gestures —are henceforth denoted as elements
within this hierarchical framework. The occurrence of these
elements is decided by the intentions at different levels which
are P-Intentions (Events), D-Intentions(Interactions), and M-
Intentions(Gestures) [27].

Moreover, intentions not only decide the occurrences but
also decide the order and pattern of the elements in the
inter-layer(i.e., they are only connected in the same layer).
These inter-layer connections between elements are related
by cause and effect(causality) [94]. This implies that the
intentions themselves drive the causality observed at each level
of the hierarchy, and this intention-driven causality Figure 2.
includes 1) Event level causality 2) Interaction level causality
and 3) gesture level causality.

Event Level Causality: This refers to causal links be-
tween events. Events are connected in a temporal sequence,
often involving cause-and-effect relationships. The causality
between events is driven by intention, particularly the intention
to complete a task.

Interaction Level Causality: This type of causality focuses
on the relationships between interactions within an event.
Interactions could be more specific actions, behaviors, or
steps that contribute to the completion of an event. The
causal relations between interactions are established due to
the intention set at the event level. The overall aim here is to
accomplish the event successfully.

Gesture Level Causality: Gesture-level causality deals
with the temporal links between poses (referring to physical
postures, configurations, or conditions) within an event. These
causal relations are influenced by the intentions set at the
interaction level. In this context, poses represent more granular
components of interactions, and their causality is aimed at
fulfilling the requirements of the interactions.

For example, consider the task of assembling furniture. At
the event level, the task could involve ”assembling the frame,”
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Fig. 2: A three-level hierarchy for causality in a manual task. The three levels are event, interaction, and gesture, respectively.
Horizontally, each node is connected by causal relations, explaining the cause and effect among them. E.g., the occurrence of
event 1 leads to the occurrence of event 2. A node from a higher level consists of one or multiple children at the lower level.
We aim to differentiate different levels of causality and study their effects in manual task learning.

”attaching the shelves,” and ”tightening the screws.” These
events must occur in a specific sequence, the frame must be
assembled before attaching the shelves. The causality here is
driven by the assembler’s P-Intention to complete the furniture
assembly.

At the interaction level, within the event of ”assembling
the frame,” interactions could include ”positioning the side
panels,” ”aligning the bolts,” and ”inserting the bolts into
the frame.” These interactions are causally linked, positioning
the side panels must occur before aligning and inserting the
bolts. The assembler’s D-Intention to successfully complete
the frame event governs this level of causality.

At the gesture level, during the interaction of ”inserting the
bolts,” gestures such as ”grasping the bolt,” ”aligning the bolt
with the hole,” and ”turning it with a wrench” come into play.
These gestures are causally connected, where misalignment
in one gesture can disrupt the interaction. These gestures
are guided by the M-Intention to complete the interaction
correctly.

B. Visualization

Effective task learning often involves the emulation of
an expert practitioner, where learners observe and replicate
demonstrations provided by a proficient master [6]. These
demonstrations are typically recorded and delivered to the
learners. Prior research has emphasized the importance of
visualizing task hierarchies in a Mixed Reality environment
[8], [54], [55]. We follow similar approach for our study in
which we present the visualization of the task by showing the
hierarchies using a a graph - Events, Interactions, and Gestures
in a Mixed reality environment. The graph structure involves
three nodes for events, interactions, and gestures as shown in
Figure 3

1) Causality Visualization: There are other tutoring sys-
tems that provide information on the current task as well
as the future task in AR [15]. In a similar way instead of
showing the next task, we show the causal task (effect of
the current tasK) to the learner. Other prior works have used
textual and visuals [25] narrative with graphs to help users
understand temporality in the task. We prefer textual and visual
information to show causal graphs because visuals stick to
memory more effectively. For our study, We show current
event, interactions, and gesture and their effect (the future)
together in the mixed reality in the form of a graph as shown
in Figure 3.

2) Demonstration of Content: When a user is trying to
learn, the most effective way is to observe and follow the
demonstration of an experienced master. The expert records
the content and delivers it to the user. Similar to prior work
[3] which allows both video and demonstration. We further
provide the users with the functions to see the 3D hand-object-
interaction demonstrations of the manual tasks in MR. This
allows users to see instructions as well as demonstrations in
MR.

IV. TEST BED

We implemented an MR scene to evaluate the effect of
causal visualization in learning tasks. The user interface and
demonstrations of the content were developed in Unity soft-
ware.

A. Hardware Implmentation

We developed an MR system by attaching the ZED Mini
stereo camera to the Oculus Quest 2. The system uses the ZED
Mini to capture both the physical scene and depth information
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Fig. 3: Our methodology to visualize the causality in the
manual task at three levels. In the Cause column, we will
show the demonstration of (event, interaction, or gesture of)
the current step, which is the cause. In the Effect column,
we will show the corresponding level of demonstration of the
future step that is causally related to the current step.

of the environment while the Quest 2 gathers hand-pose
information and displays the visualization and demonstration
in the MR scene. The creation of virtual content and hardware
integration was done using the Unity [41] game engine.

B. Test scene

In our study, we used the task of assembling a camera setup
Figure 4 as a test scene. The task was chosen because of its
procedural nature and complexity (i.e. it is hard to perform the
task without looking at instructions). The task supports all the
elements in the hierarchy which are events, interactions, and
gestures. The task consists of five events: (1) Move the base
onto a table, fix the base with two clamps, and check that it’s
set by striking it with the hammer. (2) Attach materials to a 3D
printer, insert a flash drive, and press the start button to print a
ruler. (3) Attach a vertical beam to a designated location on the
base and fasten it using a screw and screwdriver. (4) Attach an
arm to a designated location on the vertical beam and fasten it
using a screw and screwdriver. (5) Attach a camera mount to
the arm and fasten it with a screwdriver. Then, drill two holes
in a wooden board and use two bolts to secure the board to
the mount. The detailed procedure of the task is present in
Table I.

C. Authoring Content

We developed a system that converts live demonstrations
to 3D content for generating tutorials for the learner. To
create 3D tutorials of the camera setup, CAD models of the
objects were created through scanning by an Intel RealSense
435i camera. The camera was moved 360 degrees around
the object to capture RGB-D frames which were used by
BADSLAM [96], an RGB-D SLAM method to generate a 3D

mesh. The 3D models for all objects involved in the camera
setup were imported to Unity. Then one of the authors wears
an Oculus 2 with a zed camera enabling passthrough to create
the content. In the beginning, the scanned mesh models are
aligned manually with the respective physical object. This
alignment provides the initial six degrees of freedom (6DoF)
pose of the objects. After that author performs the entire
procedure. To create 3D content, hand tracking, and object
6 Dof tracking are needed. During the demonstration, Hand-
tracking data and RGB-D frames were collected along with
RGB frames from the Zed Camera and Oculus 2. The collected
RGB and RGB-D frames were used to track object 6DoF using
Megapose [97]. Both 3D hand tracking data and object 6Dof
data were used for creating 3D content for the entire camera
setup tutorial.

To find the elements of the camera assembly task, we
manually segment the entire 3D content into five events. To
segment interactions in each event, we temporally segment
the events into interactions. Each interaction consists of four
stages: (1) hand approaching an object, (2) grasping the object,
(3) manipulating the object, and (4) releasing the object. For
finding pose, we only consider gesture used in stage 2 when
the hand is grasping the object. Causal links between the
elements are also manually established using the same method
used by Fender and Holz, (2022) [25]. These causal links and
the order of operations generate our learning graph for the task
of authoring content.

V. USER STUDY

We conducted a user study with our test bed to evaluate
two evaluate our research questions. In the first, we studied
the impact of the existence of causality visualization on the
learning process of a manual task. In the second, we studied
the impact of different levels of causality visualization on the
learning process.

A. Hypotheses

Based on our research questions and literature review, we
formulated following hypothesis based on time and errors
which are well-established factors in assessing performance
in manual task learning.
For RQ 1:

• H1. Participants will spend less time learning the tasks
if shown the demonstrations of steps of the task that are
causally related to their current step than if shown only
the demonstration of their current task.

• H2. Participants will perform faster in the task after they
learn the task by understanding the causality in the task.

• H3. Participants will make fewer mistakes in the task
after they learn the task by understanding the causality
in the task.

For RQ 2:
• H4. Among three levels of causality, participants will

spend the least time learning if shown the gesture-level
causality, and the most time if shown the event-level
causality.
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Fig. 4: The camera setup to be assembled and the tools to be used in our
test bed.

Fig. 5: The printer setup in our test bed.

• H5. Among three levels of causality, participants will
perform fastest after they learn the gesture-level causality
of the task and slowest after they learn the event-level
causality.

• H6. Among three levels of causality, participants will
make the least mistakes in the task after they learn the
gesture-level causality of the task and the most mistakes
after they learn the event-level causality.

B. Study Design

1) Participants: We recruited 48 users (25 self-identified
as males and 17 self-identified as females, aged 18 to 55) for
our user study. Among the user group, 14 have used either
VR or AR devices before, 12 have used both before, and 20
have never used either one. Thirty-six users have a background
in engineering, eight in science, one in education, and three
in others. Each participant was compensated with a $15 gift
card. All participants completed the entire study. We divided
our users into four groups, each provided with different levels
of information from the learning graph.

1) The Control Group GC were shown 3D demonstrations
of the hand gestures, object affordances, interactions,
and events of the current step Figure 6 (d).

2) The First Group G1 were shown 3D demonstrations of
the hand gestures, object affordances, interactions, and
events of the current step. Meanwhile, they are shown
demonstrations of the steps that are causally related at
the event level Figure 6 (c).

3) The Second Group G2 were shown 3D demonstrations
of the hand gestures, object affordances, interactions,
and events of the current step. Meanwhile, they are
shown demonstrations of the steps that are causally
related at the interaction and event levels Figure 6 (b).

4) The First Group G3 was shown 3D demonstrations of
the hand gestures, object affordances, interactions, and
events of the current step. Meanwhile, they are also
shown demonstrations of the steps that are causally
related at all three levels Figure 6 (a).

We evaluated the learning performance by modeling the
causality for Groups (G1, G2, and G3), while the Control
group (GC) was provided no information on causality. This
approach enabled comparison of the learning performance be-
tween participants exposed to different levels of our taxonomy
for modeling causality. Testing causality levels hierarchically
mirrors how learners typically develop their understanding
level by level. This approach allows us to evaluate how incre-
mental layers of causality improve task learning, rather than
isolating them as independent conditions. Therefore, we chose
to test causality levels hierarchically instead of independently.
In our study, we would like to clarify that the understanding
of causality has a cliff-like learning effect, i.e., ”know if a
thing will happen or not,” is an approximate binary variable.
We design our user study with a between-subject setup.

2) Procedure: Each participant was warmly welcomed by
the researcher and provided with a concise introduction to
both the study and the task. The study was conducted under
the approval of the Institutional Review Board. Upon signing
the consent form, participants received a brief overview of the
task’s details. Then, they were asked to wear headsets with
pass-through capabilities to get familiar with our system in the
MR environment. The study includes two phases: the learning
phase and the testing phase. In the learning phase, each user
was provided with sufficient time (1 hour) to learn the content
using our system. Every participant finished learning within
one hour. Then, participants performed the entire assembly
task without any help in the testing phase. This phase has a
15-minute time limit to complete the task. The pre-authored
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TABLE I: Events and interactions of the manual assembly tasks with our test bed.

content is visualized in the UI panel in the form of VR scene
snapshots as exemplified in Figure 7. Participants can also see
AR demonstrations of the current interaction as exemplified
in Figure 8. After finishing the study, participants provided
feedback about the study through a semi-structured interview
and questionnaires.

3) Data Collection: Throughout the study, we recorded
participants’ performances from the third-person camera as
well as a screen capture of the AR view. We then manually
computed the length of time of each phase, event, and in-
teraction alongside task/sub-task accuracy in post-processing.
We visually compared the procedural consistency between
participants’ demonstrations of tutorials at all three levels. We
analyzed the number of times each participant from Gc and
G3 revisited the instruction, i.e., they referred to the instruction
again for more information. We did not include participants
from G1 and G2 since the coverage in the length of the
instructions is different. Therefore, it is of no need or rigor
to compare with them. After the study, participants provided
feedback on our system through the NASA TLX [98] form and
a semi-structured interview, Participants also completed a 5-
point Likert scale questionnaire. The questions from the survey
were designed to determine the participant’s memory of the
task, self-rating of their memory from learning, motivation to
learn, and comprehension of the causality and intention within
the tasks [99], [100], we designed the questionnaires following

prior works on learning manual tasks in MR [3], [8], [36].

VI. RESULTS AND DATA ANALYSIS

This section evaluates our workflow by analyzing partici-
pants’ performance, subjective feedback, and other interesting
findings.

The independent variable manipulated between our four
groups is the level of causality being visualized in the learning
system. As described in subsection V-B, Gc saw no intent
and causality information while G1,G2, and G3 were exposed
to various levels of our taxonomy. Note that the level of
causality (being visualized) is defined by the cause-and-effect
pair of the level, hence both should be visualized accordingly.
The dependent variables for each of the hypotheses in our
experiments are time spent in learning (H1, H4), time spent
completing the task after learning (H2, H5), and the mistakes
made while completing the task (H3, H6).

Thus, we make four comparisons (Gc vs G3, G1 vs G2,
G1 vs G3, and G2 vs G3). It is shown by the Shapiro-
Wilk normality test (p < 0.005) that the data from neither
our quantitative nor qualitative evaluation follows a normal
distribution. Therefore, we conducted a Friedman test for Gc
vs G1 vs G2 vs G3 and a Wilcoxon signed-rank test for all four
comparisons individually. To prove the hypothesis of RQ 1, we
compare Gc vs G3 and for RQ 2 the other three comparisons.
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Fig. 6: UIs that were shown to 4 different groups and AR animation. a) shows the event, interaction, and affordance/gesture,
b) shows the event and interaction level relation, c) shows the event level causal relation and finally d) shows the graph and
no causal relation.

Fig. 7: The VR content shown to the user in the visualization
graph.

Fig. 8: AR demonstration of the current interaction.

A. Objective Performance

1) Learning Performance: We first demonstrate the overall
learning performance by comparing the total time spent in the
learning phase, including viewing the content and practicing.
The results are shown in Figure 9.

The Friedman test shows significant differences among the

Fig. 9: Objective Results from Learning phase. The compar-
ison of average learning time is on the left-hand side. The
comparison of the average number of revisits in the instruc-
tions is on the right-hand side. (∗∗ = p < .005, ∗ = p < .05,
error bars represent standard deviations)

groups in learning time(χ2(3) = 18.725, p = 0.003). The
average learning time shows that the participants spend the
longest amount of time (all in minutes) when provided event-
level causal demonstration in G1(M = 24.71, SD = 3.08). To
evaluate H1, we compare the Gc and G3.The average learning
time of participants from G3 (M = 22.27, SD = 3.23) spend
more time than those from Gc (M = 18.24, SD = 2.60, p =
0.001, Z = −2.981). This shows that G3 which includes
causal information increases the learning (training) time as
compared to Gc which shows only the current task. Hence H1
is failed. For H4, we compare among G1, G2 and G3. The time
spent in learning of G2 (M = 21.26, SD = 2.71) is not sig-
nificantly different from that of G3 (p = 0.140, Z = −1.098).
Meanwhile, participants from G2 spend significantly less time
in learning than those from G1 (p = 0.008, Z = −2.401). Par-
ticipants from G1 also spent significantly more time learning
than those from G3 (p = 0.050, Z = −1.647). We conclude
that H4 is partly proved as the most time was taken by G1
and least by G2

2) Testing Performance: We evaluate the remaining four
hypotheses H2, H3, H5, and H6 in this section. The partic-
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Fig. 10: Average time (in minutes) spent in the testing phase
by groups. (∗∗ = p < .005, ∗ = p < .05, error bars represent
standard deviations)

ipant’s performance during the testing phases with respect to
the average total task time is shown in Figure 10 (H2 and
H5). The number of mistakes of three different levels made
during testing phase is demonstrated in Figure 11 (H3 and
H6).

The Friedman test shows significant differences among the
groups in testing time (χ2(3) = 15.9, p = 0.001) The average
testing time of the participants from G3(M = 4.31, SD =
0.35) is significantly lower than all three other groups, namely
Gc(M = 5.20, SD = 0.69, p = 0.002, Z = −2.824), G1
(M = 4.92, SD = 0.47, p = 0.001, Z = −2.981), and G2
(M = 4.61, SD = 0.24, p = 0.036, Z = −1.804). This
proves H2 and H5. The average testing time of the participants
from G1 is not significantly different from those from G2
(p = 0.058, Z = −1.5689).

Fig. 11: Average Mistakes made per participant during the
testing phase in different levels. (error bars represent standard
deviations)

We also evaluated the number of mistakes made by the
participants during the testing phase. The Friedman tests
show no significant difference among the groups in total
mistake numbers(χ2(3) = 3.3, p = 0.348), event-level mistake
numbers (χ2(3) = 0.5, p = 0.919), interaction-level mistake
numbers (χ2(3) = 5.825, p = 0.120), and gesture-level

mistake numbers (χ2(3) = 4.525, p = 0.210). This shows
that both H3 and H6 fails.

B. Subjective Feedback

I was able to understand 
why my current action is 

needed for the overall task.

I knew the result of each of 
my actions.

I understood the overall 
goal of my task after learning.

Understanding of Causality

Fig. 12: Subjective User Rating on their Understanding of
the task, overall or in detail. The results are average scores
by group from a 5-point Likert-scale questionnaire. ∗∗ = p <
.005, ∗ = p < .05, error bars represent standard deviations.

I was confident enough to 
perform the task after 

learning 

I am confident to use 
similar tools and perform 

assembly operation for future

I would like to learn 
similar assembly tasks using 

this system

Self-confidence of the Learning Gain

Fig. 13: Subjective User Rating on their Self-confidence in the
learning gain. The results are average scores by group from
a 5-point Likert-scale questionnaire. No significant difference
was found. Error bars represent standard deviations.

Fig. 14: Subjective User Rating on their Memory of the learn-
ing content. The results are average scores by group from a 5-
point Likert-scale questionnaire. ∗∗ = p < .005, ∗ = p < .05,
error bars represent standard deviations.

1) Likert-Scale Questionnare: We qualitatively evaluate
user feedback using a 5-point Likert Scale Questionnaire
consisting of 3 major categories Understanding, Motivation,
and Memory. We performed the Friedman test to compare
all the questions in the respective categories. The results are
presented below Figure 12.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3542949

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Purdue University. Downloaded on July 26,2025 at 20:48:20 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

• Understanding. The Friedman test shows a significant
difference between all four groups for Q1(χ2(3) =
8.325, p = 0.040) and Q2(χ2(3) = 8.05, p = 0.044)
but not Q3(χ2(3) = 0.175, p = 0.98). We performed
pairwise comparisons among the groups for Q1 and
Q2. For Q1, G3 (M = 4.42, SD = 0.75) understands
the importance of the task better as compared to Gc
(M = 2.58, SD = 1.24, p = 0.005, Z = −2.548).
G3 (M = 3.92, SD = 0.9) also knows better the
outcome of their actions beforehand as compared to Gc
(M = 2.75, SD = 1.35, p = 0.038, Z = −1.765)
Figure 12.

• Self Confidence. The Friedman test does not reveal any
significant difference for all the questions Q1(χ2(3) =
5.725, p = 0.125), Q2 (χ2(3) = 6.775, p = 0.079),
and Q3 (χ2(3) = 4.675, p = 0.197) in self-confidence
Figure 13.

• Memory. The Friedman test shows significant variation
in Q2(χ2(3) = 7.041, p = 0.029) but not in Q3 (χ2(3) =
5.975, p = 0.112) and Q1 (χ2(3) = 5.875, p = 0.117).
G3 (M = 4.75, SD = 0.45) users can remember to operate
the tools better than G1 (M = 3.67, SD = 1.07, p =
0.0007, Z = −2.310). Also, G2 can better remember the
tool use as compared to G1 (M = 3.67, SD = 1.07, p =
0.007, Z = −2.446).

Fig. 15: NASA TLX results. Error bars indicate the standard
deviations. We found no significant difference among the
groups.

2) NASA TLX: We used NASA TLX’s responses to evaluate
the perceived subjective mental workload experience. The
findings are present in Figure 15. After confirming the non-
normality with a Shapiro-Wilk test, a Friedman test was
conducted on the results obtained from an unweighted NASA
TLX to compare all the groups. None of the metrics showed
significance: Mental Demand (χ2(3) = 3.875, p = 0.275),
Physical Demand (χ2(3) = 1.8, p = 0.614), Temporal
Demand(χ2(3) = 4.225, p = 0.238), performance (χ2(3) =
2.625, p = 0.453), Effort(χ2(3) = 3.525, p = 0.317) and
frustrations(χ2(3) = 2.125, p = 0.546). We further do not
perform any adjustments in p-values for multiple comparisons,
as there is no significant result as shown in Figure 15.

C. Research Question Analysis

• RQ1: We observed that H1 and H3 did not yield success-
ful outcomes, whereas H2 was confirmed to be accurate.
H1 posited that the learning time in G3 would be less
as compared to Gc. Yet, the learning time in G3 is
significantly higher than that of Gc. After failing of two
hypotheses we further analyzed more results. To explore
performance improvements during the learning phase, we
incorporated an additional metric based on the number
of tutorial revisits [6]. Interestingly, the average revisits
for Gc (M = 3.17, SD = 0.72) were significantly
higher compared to G3 (M = 2.33, SD = 0.49, p =
0.018, Z = −2.090), as depicted in Figure 9. This shows
the difficulty in learning the content. Regarding H3, it was
inconclusive due to the absence of a significant difference.
We conclude that the absence of significance in the
number of mistakes is due to the similar mistakes made
during testing, which led to close counts of mistakes
across the groups at all three levels. The rejection of
H1 and H3 along with the confirmation of H2 suggest
the answer to RQ1 is that visualizing causality in task
learning results in a shorter performance time in testing
with the compromise of more time spent in learning while
there is no evidence of fewer errors while performing the
task.
Moreover, the NASA TLX workload assessment results
did not yield significance across all four groups. Through
a combination of our original hypotheses and additional
analyses, we can deduce that the inclusion of causal
information improves the quality of the learning gain
and thus enhances the performance of the participants
in the same task. However, additional causal information
induces more content to learn, resulting in a longer
learning time. Yet, it is worth noticing that despite the
extra content to learn, participants from G3 revisited
the tutorials less than those from Gc, implying a better
immediate learning gain with an understanding of the
causal information in the tasks.

• RQ2: We can see from the results that H4 is rejected
although G1 did take the most time which corresponds to
event-level causality. H5 was proven valid whereas H6 is
not supported. From further analyzing the data we found
that the reason behind the failure of H6 is the same as
discussed for H3 in the above paragraph for the mistakes
made in the task. To answer RQ2, we conclude from
our study that among all three levels, visualizing only
event-level causality introduces the most time spent in
learning while visualizing causality at the interaction level
costs the least time in learning. In addition, learning with
gesture-level causality visualization results in the least
completion time post-learning, while there is no evidence
that learners would make fewer mistakes post-learning.

VII. DISCUSSION

In this section, we summarize key results and provide
insight drawn from our analysis and post-study interviews.
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A. Better Learning Results with Intention-driven Causality

The average learning time of Gc is significantly less than
that of G3 indicating that participants are spending more
time learning additional information about the intention-driven
causality of the assembly task. However, the significantly high
number of revisits from Gc indicates that with the knowledge
of causality, the learners understand the tasks with fewer times
referring to the instructions because they get insights from
the additional causality information. In terms of the testing
performance, participants from G3 perform significantly faster
than participants from Gc, with fewer total mistakes made
during their demonstrations. The ratings from the post-study
questionnaire Understanding - Q1 and Understanding -
Q2 show that participants from G3 give significantly higher
ratings than those from Gc regarding their understanding of
the consequences of and intention of their actions in question,
which leads to better performance of the task ”I knew I needed
to clamp the base tight enough when I saw my next step
was to hit it with a hammer (G2, P4)”. This finding aligns
with the conclusion from the prior work [15], [92], [101],
[102] that in observational causal learning, the understanding
of the causality is key to the learning performance and learning
outcome.

B. Levels of Details: the Deeper, the Better

From our cross-comparisons among G1, G2, and G3, we
notice that both G2 and G3 have significantly less learning
time than G1. The higher learning time of G1 comes from the
fact that showing only event-level instruction makes it hard
for the learners to memorize the procedure and results in the
learners more frequently referring to the instructions. ”The
instruction is too long for me to remember, and I have to
rewind to the part I am doing (G1, P3).” The feedback from
Memory - Q2 indicates that without learning the interaction
and gesture/affordance levels of intention-driven causality, G1
has a poorer understanding of how to operate the tool. A
similar conclusion can be drawn from Memory - Q3 where
G1 gives lower ratings on their performance than G2 and G3
regarding their precision.

Prior works [8], [103], [104] have shown that the more
details provided to the users of the MR system, the higher
cognitive load is forced on the users, resulting in decreasing
learning performance. Yet, with details added in our study,
we do not observe a significant increase in learning time or
a significant difference in users’ subjective confidence about
the task they have learned (Self-confidence - Q1,2,3). To
sum up, we conclude that visualizing gesture-level causality
information in manual task learning in MR provides the
learners with the best understanding and memorization of
the tasks and the highest post-learning time performance in
the tasks. However, gesture-level causality visualization in
manual task learning is not the best practice when efficiency
in learning is the priority, because it results in more learning
time compared to no-causality-visualization.

C. In-place 3D visualization

In our study, we employed a hybrid approach, combining

2D videos and 3D animations, to present content to learners
about the tasks [3]. We utilized a hierarchical representation in
our visualizations to align with the hierarchical mental models
that humans naturally employ to decompose and understand
tasks. Participants are prompted to look at 3D visualization
for the current task, and then look at the hierarchical 2D
visualization for complete causal information. The different
placements of two visualizations can cause discontinuity in
participants’ learning experiences.

A potentially more promising way to visualize both pieces
of information and avoid discontinuity is via full 3D ani-
mations fixed at the objects showing current tasks followed
by the causal tasks [105]. Additionally, other forms of visual
cues [15], [24], [57] such as arrows, bounding boxes around
the objects, and textual description can be integrated to provide
a more designated learning purpose. Learners can better antic-
ipate the implications of their actions within the 3D space [6]
, leading to deeper learning

VIII. FUTURE WORK AND LIMITATION

A. Future Work
Given the insights from the results, we would like to

provide recommendations for further integration of causality
and intention in future MR manual task learning systems.

1) Visualization of Causality: One of the less satisfying
results from our study is the compromise in learning time
learners have to make when learning additional information
about causality and intention of the task, as mentioned in
subsection VII-B. There is always a trade-off between the
content’s volume and the time spent learning. For example,
”I could understand that my action would reflect the task, but
it took me a while to realize how (G4, P11.)” Therefore, we
suggest that natural, user-friendly, and dedicated visualization
techniques can be applied to causality and intention in MR.
Take the scenario of making an omelet for example. Should
the learners set the heat too high when preheating the pan, a
3D animation of an omelet being overcooked can be overlaid
on the pan in MR. Such dedicated visualizations can intuitively
acknowledge the user’s causality within the tasks without
significantly increasing the time and cognitive cost. Yet, such
visualizations’ design, formulation, and generalization remain
challenging. One promising direction is to utilize human at-
tention during an action. State-of-the-art artificial intelligence
algorithms can predict human attention based on their actions
[106]–[108]. By predicting the engagement based on learners’
interaction with the objects and better positioning the visual-
ization, it is possible that the learner can naturally perceive
knowledge without a high cognitive cost in transitioning.

2) Dynamic Causality: Showing merely one future causally
connected to the present results in neglected details is not
optimal for learning. Therefore, we propose enhancing the
representation of causality and human intention in manual task
learning by dynamically modeling causality. In other words,
the learner sees how the causally connected futures are affected
by their actions in the present. Furthermore, by showing the
future dynamically, the learners can visualize and understand a
broader range of causality, providing a complete understanding
of the task.
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Another motivation for dynamically modeling causality is
the suggestion from some psychology research [109], [110]
that humans can learn not only from correct instruction but
also from the adverse effects of their actions. By showing
the possible future failure caused by their current mistake,
learners may re-evaluate their reasoning and gain a deeper
understanding of the task’s principles. We anticipate promising
results from incorporating a dynamic representation of the
future in MR manual task learning systems.

3) Comparing methods for task decomposition: In our
study, the tasks are decomposed based on three levels of causal
hierarchy derived from cognitive psychology [27]. We em-
ployed an object-level segmentation of tasks, where causality
is determined based on the relationships between tasks that
share common objects [25]. While we focus on identifying
and categorizing the levels of causality in manual tasks and
design experiments specifically for causality, we acknowledge
that other forms of task decomposition methods can be used
to segment the task and influence the learning results. Vitally,
prior work [111] has shown that the information shown in
each visualization has a great impact on the performance
of the users following the visualization. We envision future
works to incorporate our study findings into state-of-the-art
task decomposition methods to optimize task learning with
interactive systems [112].

4) Causality addressing Error Cascades in Task Execution:
Initial errors can lead to a chain of mistakes which will
impact subsequent task performance and reduce the overall
performance. Visualizing causal links within the task can
help users understand how a current error influences future
steps and the final outcome of the task. This type of error
visualization highlights why each step is important and how
it contributes to the overarching goal of task completion.
Future directions include implementing real-time error de-
tection methods, employing adaptive visualizations to illus-
trate the cascading effects of errors on subsequent actions,
and providing corrective feedback. These can improve task
learning by mitigating the negative impact of errors, enhance
understanding, and improve learning gains.

B. Limitation

1) Pre-test for knowledge gathering: Our study considered
only post-test knowledge testing with a two-fold reason-
ing. First, participants were new to the task and unfamiliar
with our MR system of causality, and hence we assumed
a uniform baseline of knowledge. Second, considering the
manual task procedure and operations involved in our study
are monotonous, we forwent a pre-test to avoid potential
learning effects that could mitigate the findings in our post-test.
Therefore, we acknowledge that an ideal pre-test could have
been conducted to assess the participants’ prior knowledge
of the manual tasks in our study, and therefore could have
constituted a more comprehensive analysis of the learning
gain.

2) Test-bed Limitations: Our workflow for generating 3D
instructions and segmenting tasks relies on the tracking 6
DoF of the objects and 3D gestures of the hands. Hence,

we suffer from the same limitations state-of-the-art tracking
algorithms face, such as occlusion, blurry images/feed, small-
size tracking, and computation efficiency. Therefore, relying
entirely on camera-based systems and generalizing the work-
flow remains challenging to obtain high-quality 3D content.
However, compromises can be made, such as using 6 DoF
sensors, multiple cameras, or markers-based computer vision
to enhance the accuracy. One may also be concerned about
tracking non-rigid objects, such as flexible wires and cables.
However, with advances in computer graphics, state-of-the-art
vision-based algorithms can also obtain a 3D model of non-
rigid objects [113], which is encouraging. Finally, we would
like to state that the methodology applied here for tracking
does not relegate the comprehension of causality and intention
matter in manual task learning.

To test our hypothesis, we have implemented a systematic
instance of the workflow that is capable of preserving the
causal relation and intention and delivering them to the learn-
ers. Along with this implementation, we designed a use case
for an assembly task that involves interaction with multiple
objects and causally related events. Even though the use case
is designed based on real-world hand-object interactions and
assembly tasks, it is yet a test bed. We want to acknowledge
that this study aims to evaluate the implementation of our the-
ory, and the results are analyzed to justify our approach and to
bring insights into the potential contribution the understanding
of causality and intention can make to manual task learning
in the MR community. We also identified a blemish in our
experiment setup, as the task in the user study might have
been simplified, the mistake numbers across the groups did
not show significant differences, which failed to support H3
and H6. We anticipate a more rigorous setup and metrics to
evaluate the learning gain of understanding causality in terms
of mistakes made during the tasks.

Finally, we propose our work as an elicitation for future
MR manual task learning systems.

3) User Study Sample Size: Following the convention of 12
participants per group for usability and quantitative evaluation
in HCI [114] , we included 12 participants per condition in our
study. We analyzed the effect sizes post hoc. We found that our
sample size of 12 produced varying levels of effect sizes from
small effect to large effect. We specifically found large effect
sizes for metrics such as learning time, number of repeats, and
completion time in the testing phase. We found small effects
for the mistake calculation. For NASA TLX and subjective
feedback, the effect again varies. As we have results for mixed
effect sizes, sample size may have been small to detect smaller
or medium effect sizes reliably. While the current sample
size was sufficient for detecting the observed differences in
large effect size, increasing the number of participants could
further improve the precision of effect size estimates and allow
for the detection of small or medium effect. This adjustment
will provide greater statistical power, reduce variability, and
confirm the reliability of observed effects.

IX. CONCLUSION

In this paper, we studied the effect of understanding causal-
ity and intention in manual task learning in MR. We studied
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the importance of causal understanding in the learning process
and present the concept of Intentional-driven Causality for
manual task learning in MR, consisting of three layers of
causality information in a manual task, namely, event level,
interaction level, and gesture level. We then built a test bed to
study the effect of different layers of causality on the learning
gain of an assembly task. We conducted a thorough user
study with 48 users, aiming to answer the research questions
of whether and how visualizing causality helps manual task
learning in MR, as well as the effect of different levels of
causality in manual task learning. With the quantitative and
qualitative results from the study, we discuss and attribute the
improvement in learning shown in the analysis, as well as
all other phenomena and insights, worthy of more research.
We conclude that participants perform the assembly task
better after learning the causality information and gesture-
level causal information grants the best performance among
all three levels. Besides, we also draw other conclusions
on more findings from the study. Finally, we envision the
future work from our study and the concept of Intentional-
driven Causality for manual task learning in MR to help
the community create natural, efficient, and learner-friendly
manual task learning methodologies with MR.
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