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Figure 1: An overview of CARING-AI system authoring workfow. CARING-AI enables authors to create contextualized AR 
instructions through generative AI. (a) Using CARING-AI, authors frst speak their intended instruction content, (b) then 
the corresponding step-by-step instructions are generated in text. Authors interact with the interface to modify the textual 
instructions and group them. (c) Then the authors provide contextual information to the instructions by walking in the 
environment and taking screenshots with the AR HMD. (d) Finally, CARING-AI generates step-by-step humanoid avatar 
demonstrations of the AR instruction situated in the context. 
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contextual information to adapt to varying application scenarios 
and is therefore limited in authoring. To utilize the strong genera-
tive power of GenAI to ease the authoring of AR instruction while 
capturing the context, we developed CARING-AI, an AR system 
to author context-aware humanoid-avatar-based instructions with 
GenAI. By navigating in the environment, users naturally provide 
contextual information to generate humanoid-avatar animation 
as AR instructions that blend in the context spatially and tempo-
rally. We showcased three application scenarios of CARING-AI: 
Asynchronous Instructions, Remote Instructions, and Ad Hoc In-
structions based on a design space of AIGC in AR Instructions. 
With two user studies (N=12), we assessed the system usability of 
CARING-AI and demonstrated the easiness and efectiveness of 
authoring with Gen-AI. 

CCS Concepts 
• Human-centered computing → Mixed / augmented reality. 
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1 Introduction 
Augmented Reality (AR) instructions provide an interactive and 
immersive learning experience by rendering digital content onto 
physical environments and enabling visualization of complex con-
cepts or procedures. With such instructions, end-users explore 
various scenarios and practice skills in a more realistic and context-
rich setting. Due to their vast capabilities and their potential to 
enhance user engagement [125], facilitate learning [135], and im-
prove performance [24, 43] in various contexts, AR instructions 
have gained considerable attention in a range of felds. 

In the manual task instruction domains, humanoid avatars are 
the preferred options of visualization [13, 22], because they can con-
vey spatial and temporal instructions on complex sequences of tasks, 
such as machine tasks, assembly tasks, manual skill learning, and 
medical training. Prior works thrived to optimize the authoring of 
animated humanoid avatars in AR. Beyond regular animation work-
fows supported by software such as Unity [117], Unreal Engine [35], 
or Blender [32], research has proposed diverse methodologies to 
overcome the requirement of expertise in both the subject mat-
ter of the instructions and the programming for animation [22]. A 
promising method is Authoring/Programming by embodied Demon-
stration (PbD, i.e. creating or editing humanoid animation in AR 
environments by physically interacting or demonstrating actions 
in the real world). PbD have the advantages such as realistic ani-
mation [57, 126], code-less efciency [23], engagement [2, 7, 81], 
interactivity [50, 122], and learning gain [135] in AR instruction 
applications. Despite the benefts and simplicity for the authors, 
PbD is still subject to real-world human motion (i.e. the authors 

have to physically present and demonstrate) and requires complex 
hardware setups and re-setups for Motion Capture (MoCap) such as 
cameras or motion sensors. Therefore, authoring with PbD systems 
is limited in varying contexts ad hoc. 

The development of Generative Artifcial Intelligence (Gen-AI) 
has brought AI-generated content (AIGC) into the discussion of 
authoring AR instructions [45], considering its potential to elimi-
nate expertise barriers and hardware requirements. With this rapid 
growth of Gen-AI power, content creation in various modalities can 
be democratized to higher levels [12, 77]. Users are enabled to gener-
ate desired content by simply prompting via intuitive modalities (e.g. 
textual conversation [9, 56, 95, 96] and reference image [94, 98, 99]). 
Many ongoing research and discussions have identifed opportuni-
ties for deploying AIGC in AR for its power of abstracting human 
knowledge and a wide range of I/O modalities [12, 113]. 

In pursuit of the design space of AIGC in AR instructions, re-
search is faced with the challenge that Gen-AI lacks the contex-
tual and background information to be deployed into real-world 
applications [77]. In the scope of AR instruction, contextual infor-
mation is a critical metaphor, where spatial-temporal information 
of the instruction is to be blended in the context of the users. A 
taxonomy of context-awareness in AR instruction, that many prior 
works [38, 92, 120] converge towards, encompasses three key as-
pects: the human, environment, and system. 

Building on this existing knowledge, we aim to fll the gap be-
tween state-of-the-art Gen-AI and context-aware AR humanoid 
avatar instructions. Specifcally, our research is motivated to explore 
(1) What context information does AI-generated humanoid avatar 
animation lack for AR instructions? (section 3) (2) How can this 
missing contextual information be delivered to Gen-AI? (section 4) 
and (3) What insights can we gain from our designs to further foster 
developments towards the use of AIGC in AR? (section 9) 

From a preliminary expert interview, we summarize the design 
goals for naturally providing contextual information to AIGC in-
corporating user interactions in the authoring process. We then 
present CARING-AI, an AR system enabling authoring contextu-
alized humanoid avatar animation for AR instructions. Given a 
textual description of the task to instruct, CARING-AI generates 
step-by-step textual instructions that can be modifed by the users 
and further generates motion that animates humanoid avatars as 
the visual cues in the instructions. After giving the textual instruc-
tions to animate, authors navigate and scan the environment with 
an AR Head-Mounted Device (HMD). Then, CARING-AI temporally 
and spatially adapts the AI-generated instructions to the human, 
environment, and system context of the task. 

Our contributions are four-fold: 

• A code-less and Mocap-free workfow for authoring ani-
mated humanoid avatar instructions in AR with Gen-AI, 
contextually aware of the human, environment, and system. 

• A difusion-model-based algorithm to temporally smooth 
sequences of individually generated humanoid motions. 

• An AR interface for authoring AR instructions from textual 
input describing the tasks, avatars’ trajectory, and FOV. 

• A series of studies evaluating the performance of our system 
and assessing the efciency of creating AR animation with 
Gen-AI compared with a baseline PbD method. 

https://doi.org/10.1145/3706598.3713348
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2 Related Work 

2.1 AR Instruction 
AR instruction refers to the use of AR technology for instructional 
purposes, such as visualizing complex concepts, exploring various 
scenarios, practicing skills, and providing real-time feedback. 

Our use of the AR instruction metaphor is grounded in real-world 
applications in diverse domains including assembly [22, 33, 64], 
education [34, 49, 71, 80, 89, 119], manufacturing [91], logistics [78], 
IoT [111, 129] and domestic applications [10, 40, 54, 123, 123]. 

Our scope focuses on the visualization techniques of animated 
humanoid avatars in authoring AR content for tasks that convey 
spatio-temporal instructions to the end-users. Through our wide 
literature review of AR instructions, we conclude that the infor-
mation conveyed by AR instructions can be categorized into three 
types: 

Spatial information refers to the geographical or spatially-
related data such as the location of certain objects or the occurrence 
of interactions. Spatial information is usually visualized by 3D 
models [34, 41, 48, 130], overlaying data [40, 54], and visual cues 
such as arrows and lines [10, 64, 112]. 

Temporal information refers to the time-related data such as 
the order, synchronization, or timing of the movement or occur-
rence in the AR. Temporal information can be visualized through 
textual descriptions of order or procedural [36], animation [33, 89], 
video [11], or sequential overlays [112]. 

Spatio-temporal information refers to the information that 
encompasses both spatial and temporal descriptions of an event, an 
interaction, or movement in AR, explicitly addressing the change of 
spatial data in a temporal interval. Spatio-temporal information can 
be visualized in AR by combining spatial and temporal methodolo-
gies. When spatio-temporal information depicts a human motion or 
their interaction with the environment, it is better visualized in the 
animated humanoid avatars [14, 22, 46, 121], where the end-users 
of the content can learn through following the avatars. 

2.2 Authoring AR Content 
Authoring AR content refers to the process where designers explic-
itly assign spatial behaviors of the virtual components to the physi-
cal world [93]. Programming-based authoring tools enable authors 
to create AR content through programming languages and mathe-
matical modeling [32, 35, 117]. Authoring by programming creates 
a precise AR experience, however, at the cost of requiring authors’ 
expertise in both the subject matter and programming. Moreover, 
it isolates the authors from the target environment where the AR 
applications emerge, depriving the spatio-temporal connection to 
the target environment of the authors. 

To tackle the challenges above, prior arts propose the concept 
of immersive authoring, where the author can create AR content 
by interacting with both the virtual components and the physi-
cal world [66]. To immersively author humanoid avatar anima-
tion, prior work has applied methods based on embodied demon-
stration to authoring. Through embodied methods, designers can 
create human movement and interactions with objects by simply 
demonstrating [14, 22, 23, 73, 100, 120, 121]. However, authoring 
through demonstration is subject to the hardware needed for Mo-
cap [22, 121]. In addition, it requires the author to be physically 

interacting with the environment, which is often not possible or 
even needed. For example, the environment may be remote for the 
author, the environment itself is virtual, the concept that is being 
demonstrated is not physically plausible or imaginary, or costly for 
various reasons. 

To overcome the barriers of expertise requirement, hardware 
limitation, and physical interactions, researchers have investigated 
the uses of AI-generated content (AIGC) in AR applications. Early 
works are limited by the modalities and generating power of Gen-AI 
and, therefore, focus on only a bounded area. For example, Genera-
tive Adversarial Networks (GAN) are capable of generating images 
based on a given text or image input. It has been deployed in vi-
sual tasks such as fashion design [109, 133], rendering a realistic 
shadow [69], reconstructing an occluded human body [21] or virtual 
objects [132] or generating new virtual objects [59, 114]. 

With the recent development in Gen-AI technology, methodolo-
gies have enabled content generation in a wider range of modal-
ities (e.g. text-to-text by Models such as Generative Pre-trained 
Transformer (GPT) and its successors [9, 56, 95, 96], T5 [97], and 
BERT [27], text-to-image by large vision models [1, 94, 98, 99, 107] 
and by Difusion Models [42, 87, 104, 108, 115], text-to-3D [72], 
image-to-text [94], etc.) with faster and better-generated quality [28]. 

The uniqueness of Gen-AI arises from the fact that it can gener-
ate novel content, rather than inferencing and acting on existing 
data or knowledge bases and choosing existing content via an 
if-else rule database [37]. 

The recent developments that have demonstrated the out-of-
ordinary capabilities of Gen-AI have inspired and enabled our work 
to embed AIGC into AR applications. We present related ongoing 
research (i.e. non-peer-reviewed reports) as well as some recently 
published papers to diferentiate the key aspects of our approach. 
To the best of our knowledge, the capabilities we have demon-
strated in AIGC for AR are new and are to be still explored from 
both the design space and applications viewpoints. Hu et al. [45] 
explored the design space of AIGC + AR applications through an 
interview, and concluded with several discussions regarding the 
user, environment, and function of the AR application. Lv et al. [77] 
concluded that context is a key consideration in giving prompts to 
Large Language Models (LLM). Soliman et al. [116] envisioned us-
ing Gen-AI in ARGC for its wide range of modalities. Chen et al. [18] 
implemented an LLM-based AR system that incorporates spatial 
and contextualized information to generate textual instruction in 
the AR application. However, these prior works deal with textual 
instructions, while ours focuses on humanoid animation to provide 
spatio-temporal instructions with the avatar. A recent survey by 
Chamola et al. [16] investigated the capabilities of existing Gen-
AI methodologies and summarized the characteristics of possible 
AIGC + Metaverse applications via clustering the methodologies. 
Their research pointed out a key insight towards the prospect of 
Gen-AI in Metaverse: generating 3D content for Metaverse appli-
cations (AR in our scope) via Gen-AI needs the incorporation of 
contextual information. This insight is also aligned with the re-
cent works such as those of Huang et al. [47] and Shi et al. [113]. 
They recognized the missing "contextual memory" and designed 
a knowledge interactive agent to identify the missing knowledge 
and pass it to the Gen-AI model to ground the model in contextual 
applications. 
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Motivated by the prior works, we position our work to fll the 
gap between the AI-generated humanoid avatar animation and AR 
instructional applications, by contextualizing the generated content 
via author interactions. 

2.3 Context-aware AR Applications 
The metaphor of context-awareness has been a signifcant area of 
interest among both researchers and practitioners. Lee et al. [65] 
defne context awareness as the ability of a system to apply the pat-
terns given the constraints imposed by the real world. An established 
taxonomy [38, 92] categorizes context-awareness into three types: 

• Human Context, where the AR systems recognize the hu-
mans (users and non-users), take into consideration their 
profles [46, 61], status [8, 10, 110, 112], or their interac-
tions [25, 29, 71, 76, 131] and adjust the AR components 
accordingly. 

• Environmental Context, where the AR systems perceive 
the surroundings of the users and understand the presence 
and absence of physical objects [19, 40, 54, 58, 123], temporal 
primitives [105, 106], or digital representations of the sce-
nario [20, 25, 36, 63, 68, 83, 93, 110, 121], and adjust their 
components correspondingly. 

• System Context, where the AR systems are aware of their 
input/output [61] or their own states [29, 112, 131] in the 
realities, and adapt to these contexts. 

In the scope of AR instructions, all three categories of context 
awareness are essential. With human-context awareness, systems 
are capable of adapting the instructional content according to the 
users’ performance to maximize the learning gain [46]. Besides, 
understanding human motion enables the system actively to de-
cide which steps in the instructions are best to be visualized to the 
users [29]. The location of the visualization in AR also relies on the 
human context [25, 71, 112, 131]. On the other hand, environmen-
tal context also plays a key role in AR instructions. For instance, 
instructing hand-object interactions in AR requires the overlays of 
3D models of the objects to be aligned with the physical world for 
visual cues [22, 40]. The environment also possesses rich semantic 
information that determines the content of the instruction [121]. 
Moreover, the system context helps to decide the procedures in AR 
instructions by recognizing the states of the instructions and timely 
transiting to the subsequent ones [22]. 

Grounded on the prior works and the three categories above, we 
discuss how we can contextualize the AIGC in AR instructions. 

3 Preleminary Study and Design Rationale 

3.1 Preliminary Study 
To better understand AI-generative content (AIGC) for AR instruc-
tions, we conducted a study with six participants (P1-P6, four males 
and two females) who have prior experience in creating AR appli-
cations for procedural instruction. All Participants were academic 
researchers from diferent disciplines: Electrical and Computer En-
gineering (3), Computer Science (2) and Mechanical Engineering 
(1). The mean age of participants was 29.5 and all of them had at 
least 4 years of experience in creating AR/VR/MR applications. 

Figure 2: Problems of AI-generated humanoid avatar anima-
tion identifed in the preliminary study (a) the ofset between 
the generated content and the context, i.e. the interaction 
is not spatially aligned with the object, (b) the temporal in-
consistency, i.e. the generated motion is not temporally con-
nected, and (c) the unftting visualization extend, i.e. the 
generated avatars are not of the best scale to convey the in-
structions (full-body v.s. half-body v.s. hand-only) 

Procedure: We showed a seven-step humanoid avatar animation 
instruction task to the participant, generated by the state-of-the-art 
Generative AI algorithm GMD [55]. The animation is generated 
from the textual input of "cutting an apple" and contains the follow-
ing steps: 1) Go to the cutting board, 2) Take the apple with the left 
hand, 3) Put the apple on the cutting board, 4) Go towards the knife 
area, 5) Take the knife with the right hand, 6) Go to the cutting 
board, 7) Cut the apple with a knife. 

After participants watched the content, three authors inter-
viewed them for 30 to 60 minutes with inductive and open-ended 
questions. In addition to their opinion on the quality of the shown 
animation, we asked general questions about the challenges of 
creating an AR avatar tutorial, the quality of the content, and the 
potential gap between the characteristics of demonstrations in AR 
instructions and AIGC. The interviews were recorded, transcribed, 
and coded by the same three authors. Each author reviewed the 
transcripts and summarized an initial set of design goals. Three 
authors merged to discuss each other’s design goals and concluded 
a refned version by eliminating redundant points and including 
as many exclusive points as possible. The analysis provides the 
following insights and the Design Goals (DG) listed below: 

DG 1) Spatially Aware Content The need for AIGC to be 
grounded in the real world for AR applications is evident. The AIGC 
should be aware of the user’s real-world environment which in-
cludes objects, their locations, and surfaces. All participants pointed 
out that spatial information is important to transfer virtual content 
into the physical world for AR applications (P1-P6). Additionally, 
the AIGC should provide avatar demonstrations subject to the users’ 
vicinity where specifc interactions and objects are located (P1, P2, 
P5). "The tutorial should include an avatar demonstration of manipu-
lating a virtual object, when real and virtual are overlaid for a better 
understanding of the content." - P2 

DG 2) Transition Continuity The AIGC should be smooth 
when transitioning from one event or interaction to another. All 
the users mentioned that the content shown was not continuous and 
there were sudden breaks between the interactions. "All the actions 
present were looking separate and there was no connection between 
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Figure 3: Our consideration of the design space of AIGC in AR instructions is composed of two dimensions: context and content. 
An AR instruction can be either temporal or spatial based on the contextual information it conveys, either local or global, 
based on the scale of the content it contains. 

the actions" - P1. Participants also mentioned that it was difcult 
to create continuous and smooth AR avatar instructions with the 
currently available technology (P2, P4). "In my case, I created step-
by-step small steps for creating tutorials by avatar demonstrations of 
assembly" - P2. 

DG 3) Scale of Content The AIGC should include diferent 
scales of demonstration adaptive to the diferent scales of the con-
tent in terms of the movement, focusing on diferent parts of the 
instructions. This can be achieved by giving users the freedom to 
decide whether they prefer to see the whole body (third-person 
view) or just the hands (First-person view) of an avatar(P1, P5). 
Moreover, this will also decide the scale of the avatar and virtual 
objects present in the scene (P2, P3). "Author should have the free-
dom to watch the content in the visualization method they preferred." 
- P3. 

DG 4) Flexibility in Modifcations of the Content The AR 
tutorials should contain fexibility in editing, recreating, or remov-
ing the content (P1, P4, P5), which is not enabled by the Gen-AI 
models themselves without designated interactions with the user. 
Participants from their prior experience also mentioned that modi-
fcation in AR tutorials is time-consuming and requires a lot more 
efort (P1, P6). "I created an AR avatar tutorial for a mechanical 
assembly task and it took me a lot of time to make the content" - P6. 
Participants acknowledge the use of the AI model in creating the 
tutorials because of less coding efort (P1). "It amazes me that these 
tutorials are just created from the text. This will make AR content 
creation easy and fast" - P1 

3.2 Design Space 
From prior works [6, 17, 44, 51] and our study fndings, we con-
clude that the current methods of creating AR instructions from 
AI-Generated Content (AIGC) are sophisticated and cumbersome. 
The four aforementioned design goals are key to grounding AIGC 
in AR instructions. Most participants agreed that Gen-AI is a pow-
erful tool that can be used to create AR avatar motions, per intuitive 
and efcient interaction techniques designated to utilize the gen-
erative power (DG 4). We also found that context and content are 
the most important aspects for AIGC to be used in creating avatar 
instructions for AR applications. From the context side, the Gen-AI 
model should understand the physical space and their elements 
which includes recognizing specifc locations, objects, landmarks, 
and their relations (DG 1). The content can be either an event or 
interaction and should be presented temporally consistent to the 
user (DG 1). Moreover, the scale of the content also matters when 
it comes to the efciency of the instructions (DG 3). To this end, 
we identify context and content as two essential dimensions of the 
design space of AIGC in AR instructions, as shown in Figure 3. 
The frst dimension is the context, which can be either spatial or 
temporal: 

• Spatial context: It refers to the information related to the 
physical environment which involves location, objects, and 
their interactions. 

• Temporal context: It refers to the synchronization and 
timing of information conveyed by the AIGC. 

The second dimension is the content in AR, which can be either 
global or local: 
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• Local content: It refers to the specifc content of the instruc-
tion constrained in the users’ immediate vicinity, which is 
to be depicted in low-level details in the AIGC instruction. 

• Global content: It refers to the broader perspective of the 
content relating to the overall scope of the task, describing 
the high-level goals of steps. 

We further explore the AIGC in AR instructions located in each 
of the quadrants divided by the two dimensions above. 

Local-spatial instructions explain users’ closest vicinity infor-
mation about the objects, locations, their semantic information, and 
relation with each other (DG 1). Such instructions locate and align 
the 3D object models and humanoid avatars with the corresponding 
physical objects or areas. 

Local-temporal instructions reveal the timely order of inter-
actions between the avatars and the vicinity. Such instructions 
illustrate step-by-step how-to for each interaction or action with 
temporal consistent transitioning from one to another (DG 2). 

Global-spatial: instructions depict the approximate whereabouts 
of the objects, areas, or interactions that are positioned outside the 
local vicinity. In contrast to local-spatial instructions, global-spatial 
instructions posit the content approximately in a space rather than 
detailing the exact location in the space (DG1). 

Global-temporal: instructions guide the end-users from one 
space into another and change the vicinity of the end-users with 
temporally consistent transitions (DG2). 

We built the CARING-AI system based on the design space de-
composition above, addressing the design goals that we have de-
rived. 

4 CARING-AI System 
We developed the CARING-AI system that allows authors to gener-
ate and contextualize avatar animation instructions in AR. Based on 
the discussion above, we derived the following features in our sys-
tem: 1) Allowing authors to create textual instruction with editable 
features (DG 4), 2) Scanning the environment to get spatial context 
information (DG 1), and 3) An authoring interface for visualization 
and editing of the generated content (DG 2, 3, 4). In this section, 
we discuss the implementations of the algorithms and modules of 
CARING-AI and the present our interface. 

4.1 System Overview 
CARING-AI consists of the following steps as shown in Figure 4: 

1) Refning textual instructions. The user provides a task 
description to ChatGPT [88], which returns the step-by-step textual 
instructions to perform the task. The user can then further modify 
or correct the generated textual instructions. 

2) Scanning the environment. The user moves in the physical 
environment to scan the objects, locations, and areas, as well as 
record their trajectory, which will be used to provide spatial context 
information to the system. 

3) Generating avatar instructions. The system takes refned 
textual input from Step 1 to generate avatar instructions based 
on the design space discussed in subsection 3.2. The generated 
instructions are also grounded by the context information provided 
in Step 2. 

4) Visualization and Editing. The user can view and edit the 
AI-generated instructions. 

4.2 Textual Instructions 
This module allows users to refne textual instructions for a task 
using a large language model (LLM), namely ChatGPT API [88]. 
Given a user-intended task to instruct, CARING-AI prompts [128] 
the ChatGPT API to refne the user description of the task into a 
sequence of step-by-step predefned action labels, which are pre-
sented in the HumanML3D dataset [39] (a large computer vision 
benchmark dataset), by specifcally asking "detailed step-by-step 
instructions of the [task name]". The purpose of this step is to align 
the terminology of the textual instructions with the available action 
labels from the dataset to ensure precise generation by the model. 

After the refned instructions are generated, users can make 
necessary adjustments, add more details, or remove information to 
ensure the instructions align with their specifc needs (for example 
if the object in the textual instruction is not present in the environ-
ment). The fnalized instructions will then be used to generate the 
avatar motion for the task. 

4.3 Scanning the Physical Space 
CARING-AI utilizes HoloLens2 AR-HMD [79] as the front-end 
platform. In order to capture the spatial context of the environment, 
such as objects, their locations, and semantic meaning as shown 
in Figure 5, the user navigates and scans the environment with the 
HMD and starts the Scan mode in the interface. The user walks 
around from and to contexts where actions happen, and scans 
the entire required environment. Upon entering the Scan mode, 
CARING-AI records the surroundings by taking RGB images of 
the HMD FOV and starts recording the global trajectory of the 
user (built-in SLAM). The RGB images are passed to an object 
detection algorithm [101] (30ms per image) to get the semantic 
classifcation and relative location of the objects. The RGB images 
and the object information are further passed to the state-of-the-art 
6 DoF algorithm, MegaPose 6D [62] to obtain the 6 DoF information 
of the objects. Then CARING-AI overlays virtual objects onto the 
real object based on 6DoF information. This information of objects 
is then used to generate avatar motion with detected and overlayed 
objects. 

4.4 Generating the motion 
After getting the textual instruction and spatial information from 
the user, we generate the avatar motion utilizing a Gen-AI model. 
Specifcally, we modifed the state-of-the-art text-to-motion AI 
model (MDM [118]), to generate the global-spatial-context-aware 
motion (subsubsection 4.4.1), local-spatial-context-aware motion 
(subsubsection 4.4.2), and temporal-context-aware motion (subsub-
section 4.4.3), covering our design space of AR avatar instructions 
shown in Figure 3. 

4.4.1 Global-Spatial-Context-Aware Generation. As discussed in 
DG 1, it is key to contextualizing the generated animation for AR 
instructions. To tackle this challenge, we exploit the idea of Guided 
Motion Difusion (GMD) [55]. On top of other motion generation 
difusion models, GMD can generate humanoid motion data, using 
text descriptions and location cues as the conditions to guide the 



CARING-AI CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Figure 4: The overall pipeline of the CARING-AI system. Users start by generating textual instructions by speech or text. These 
instructions will be further grounded in the context of the users by scanning the environment. With context, instructions are 
used to generate humanoid avatar motion to demonstrate the instructions, blended in AR. 

Figure 5: Our methodology for obtaining the contextual infor-
mation. For global information, users walk from one location 
to another to provide trajectories (a). For spatial information, 
users look at the local objects and take screenshots (b, c). This 
contextual information will be used to generate humanoid 
avatar motions that are aware of the spatial context for global 
and local content. 

generation. However, GMD does not support the generation of se-
quences of multiple actions. To address this challenge, we modifed 
the architecture of the Motion Difusion Model (MDM) [118] (which 
is also used by GMD as their base model to include trajectories) as 
shown in Figure 7 and applied the GMD method to generate the 
humanoid motion with trajectory guidance. We use the trajectories 

Kicking Dancing

Running and Stopping Going Downstairs

(a) (b)

(d)(c)

Figure 6: Some examples of our motion generation models. 
The motion can be local (a) or global (b, c, d, i.e. from one 
place to another) 

recorded in the Scan mode as the conditions to the difusion model 
to provide global spatial information to the generated motion. 

4.4.2 Local-Spatial-Context-Aware Generation. CARING-AI is also 
capable of conveying local spatial information in the instructions, by 
generating the motion of the hand with 3D virtual objects overlaid 
on the physical objects using another motion difusion model for 
hand and object interaction [15]. As described in subsection 4.3, in 
the Scan mode, CARING-AI obtains the location information of 
the objects in the physical environment and overlays 3D models 
of them in AR. To make sure that the generated avatar interacts 
with the objects correctly, we ask the users to exit the Scan mode 
at the end of their trajectory while looking (with the HMD) at the 
objects that they intend to interact with at the step. In this way, we 
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Figure 7: The comparison of the difusion training overview 
is between the Motion Difusion Model (MDM) (lef) and ours 
(right). The MDM conditions motion frames by placing ��� 
at the frst location, while our conditions motion frames by 
adding �� to each motion embedding. For simplicity, we have 
omitted the random masking of the text embedding used for 
classifer-free difusion guidance. 

guarantee to record the object 6 DoF information relative to the 
last global location of the trajectory. 

4.4.3 Temporal-Context-Aware Generation. As discussed in DG 2, 
temporal smoothness is key to the sense of continuity in AR instruc-
tions. The original MDM model is designed to generate only a single 
action by conditioning the instruction into the whole sequence at 
once. Generated motions exhibit discontinuity in transition seg-
ments because they are produced independently, without incorpo-
rating information about the start and end of each instruction as 
shown in Figure 2 (b). 

To address this challenge, we modifed MDM to condition in-
structions to each frame, allowing them to generate multiple action 
sequences jointly. We visualized the architecture and modifcation 
in Figure 7. For the sampling process, we generate multiple actions 
by adding distinct text conditions, represented by �� , to the frames. 
For example, for three actions each 60 frames long, we applied 
diferent �� values across the ranges: 1–60, 61–120, and 121–180 
frames. 

However, due to the limitation of the frame length of the training 
dataset, the quality of the motion drops empirically when the frame 
number exceeds 196. Further, we designed a temporal smoothing 
algorithm to generate an unlimited length of smooth avatar motion 
and applied it after the generation of motions. As illustrated in 
Figure 8, the temporal smoothing function, (denoted as � ) aims 
to mitigate the discontinuity among the transitional segments of 
motion (�1 and �2, where � represent two transition segments). 
Each of the transition segments comprises a length of � frames. We 
also set the weight function �� to defne the ratio for combining the 
two transition segments. For this purpose, we employed the shifted

1sigmoid function for �� , given by � (�) = 1+� −(� −(�/2) , to serve as our 
smoothing mechanism. Consequently, the resultant mixed frames, 
represented as �̃� , can be expressed as 

�̃� = � (�� 1, �� 2, �� ) = �� �
1 + (1 − �� )�2 (1)� � . 

Then, to keep the length of the generation action length, we ex-
tended its length twice with linear interpolation sampling. 

�̃�1 − �̃�0ˆ ˜�� = ��0 + (� − �0), (2)
�1 − �0 

�−1where � is 2�−1 � , �0 is ⌊ 2 
�
� 
−
− 
1
1 �⌋, �1 is ⌈ 2 

�
� 
−
− 
1
1 �⌉, ⌈·⌉ and ⌊·⌋ indicate 

the ceiling and the foor operator, respectively. 

Algorithm 1 Temporal smoothing 

INPUT: �� 
1, �2 ⊲ Transition segments � 
�� ⊲ Temporal smoothing function 

OUTPUT: �̂ ⊲ New transition segments 
1: for � = 0, 1, ..., � − 1 do ⊲ Temporal smoothing 
2: �̃� = �� �� + (1 − �� )�� 
3: end for 
4: for � = 0, 1, ..., 2� − 1 do ⊲ Linear interpolation 

�−15: � ← 2�−1 �, �0 ← ⌊ 2 
�
� 
−
− 
1
1 �⌋, �1 ← ⌈ 2 

�
� 
−
− 
1
1 �⌉ 

6: 
�̃�1 −�̃�07: �̂� = �̃�0 + (� − �0)�1 −�0 

8: 
9: end for 

Figure 8: The illustration of the temporal smoothing algo-
rithm of CARING-AI 

4.5 AR Interface 
To achieve DG 3 and DG 4, We introduce an AR interface that 
includes all the functions discussed above and additional functions 
such as visualization, editing, and modifying the content. The au-
thoring system for CARING-AI consists of four modes: 1) Task 
mode to get users the step-by-step instructions, 2) Scan mode to 
ground the instructions in the context, 3) Author mode to design 
and edit textual instruction and avatar motion content, and 4) View 
mode to examine the authored AR avatar instructions. The AR 
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menu is always present in the user’s view on the left hand so that 
users can easily access the all functions of the current mode and 
also switch between them. 

(a) (b)

(c)

Figure 9: AR User Interface of CARING-AI. In (a), users can 
start authoring a new task or start contextualizing the in-
structions. In (c), they can see the generated textual instruc-
tions and select a single or multiple of the instructions. In (b), 
they can choose to view the humanoid avatar animation (Play 
button), change the scale of the humanoid avatar (Change 
Scale button), modify the textual instruction by speech (Mod-
ify Instruction button), insert new instructions (Insert Previ-
ous and Insert Next buttons), and delete the selected instruc-
tions (Delete button). 

As shown in Figure 9 (a), the user frst starts by providing the 
task description using a voice command by clicking the New Task 
button to enter the Task mode. The user speaks to the system to 
specify their task, then the system generates textual instructions 
shown in the instruction panel Figure 9 (c). When the users select 
one step from the panel, they can insert new instruction steps, 
delete the selected ones, or modify them. 

Then, the user selects and groups several steps that happen in a 
global context (i.e., steps that happen at the same location in the 
space, for example, in Figure 9 (c), Step2: go to the kitchen sink and 
Step3: wash the apple belong to the same global context), with the 
selected instructions highlighted in yellow. After selection, the user 
clicks the Contextualize button and enters Scan mode to scan the 
physical environment. In the Scan mode, the user simply walks 
in their physical space to mark the global location for the cur-
rent group (e.g., in Figure 9, the user walks to the kitchen sink) 
and ends contextualizing the current group by taking a screenshot 
while looking at the contextual environment (e.g. looking at the 
sink with the apple and knife visible in the scenario). Upon object 
detection, CARING-AI then overlays 3D virtual objects on the cor-
responding physical objects which users can see and adjust the 6 
DoF with built-in freehand interactions. Iteratively, the user groups 
and contextualizes the rest of the instructions. The contextualized 
instruction panels are highlighted in green while the users are still 
allowed to revisit and edit. 

Upon the completion of contextualizing all steps, the user enters 
the Author mode. The user can click the Modify Instruction button 
to modify the instruction and regenerate animation for a specifc 
step, or click the Change Scale button to change the visualization 
scale of the selected step. The available scales of the visualization 
are full-body avatars and hand-object avatars (i.e. only the hands, 
the forearms, and the objects are rendered). 

Meanwhile, the user can enter View mode by clicking the Play 
button. This mode visualizes the currently selected instruction by 
rendering the generated context-aware avatar animation in the 
HMD. 

4.6 Software and Hardware Implementation 
We implement CARING-AI using Hololens 2 [79] with built-in 
SLAM tracking for AR experiences. CARING-AI interface was de-
veloped in Unity 3D on a local PC (Intel core i7-9700K CPU, 26 
GHz, 128 GB RAM). During the scanning mode, we use a resolution 
of 1280 x 720 for the RGB image. The images are then processed 
in a local PC for object detection and the 6 DoF estimation algo-
rithm for overlaying the virtual 3D on the real object. We used the 
Mixed Reality toolkit (MRTK) for the interactions of hands with the 
virtual objects and the interface. For 6 DoF of the object, we used 
the pre-trained MegaPose6D [62] model, which can estimate 6 DoF 
of objects in the wild. For object detection, we used the detection 
model [101] pre-trained on ImageNet [26]. We fne-tuned the object 
detection algorithm which is used in fnding the spatial context 
for the content. The training of object detection was performed on 
objects dataset collected for used cases and user study purposes. 
For each object class, we collected 600 images. The 3D scans of the 
objects were also collected and stored in the database for the 6DoF 
algorithm and virtual object overlays in physical. As mentioned in 
section 4.4, we used the pre-trained Guided Difusion Model [55] as 
the motion generation model on the HumanML3D [39] dataset. The 
action classes from the dataset are further used in the user study 
and for the demonstration. One batch of motion generation takes 
time of 36 seconds, with one NVIDIA RTX A6000 GPU. 

5 Quantitative Evaluation 
In this section, we assess the efcacy of our context-aware gen-
erative AI approach in real-life scenarios by comparing it with 
a baseline (GMD [55]). As a preliminary step, we evaluated our 
modifed difusion model algorithm Figure 7 compared to GMD 
quantitatively. We chose GMD as our baseline for comparison be-
cause GMD is a state-of-the-art model based on MDM. This study 
assesses the modifed model’s performance in generating humanoid 
animation, which is the backend algorithm of our system. 

5.1 Evaluation 
5.1.1 Baseline. We used a pre-trained model of GMD to compare 
our algorithm. GMD [55] is pre-trained with the HumanML3D 
dataset, which is annotated human motion data. The dataset has 
22 joints |J | = 22 following the skeleton representation of the 
HumanML3D dataset [39]. The HumanML3D dataset encompasses 
14,616 motions, paired with 44,970 descriptions that are comprised 
of 5,371 unique words. The combined duration of all motions is 
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Table 1: Task and instructions 

Task Instructions 

Charging a Phone Get the charger; Insert the cable into the phone; Plug the charger into an outlet 
Turning on the TV Pick up the remote; Point it at the TV; Press the power button 
Closing a Window Approach the window; Grasp the handle or sash; Push to close 
Starting a Computer Sit in front of the computer; Press the power button; Wait for it to boot up. 
Exercising Crawl; Run; Band Push; Crawl to Stand 
Reading a Book Walk to the bookshelf; Choose a book; Go to the living room; Sit on the couch or chair; 
Closing a Window Approach the window; Grasp the handle or sash; Push or slide to close 
Eating an apple Approach to the table; Pick up the remote; Eat the apple; Move back; Turn around; Leave the kitchen 
Use a 3D printer Pick up PVA; Go to printer; Attach Filament to printer; Start printer 
Making Tea Boil the water; Place a cup on the table; Pick the pot; Pour boiling water into the cup. 

28.59 hours. On average, each motion spans 7.1 seconds, and each 
description contains 12 words. 

5.1.2 Metrics. To validate the performance of our model, we con-
structed 10 practical scenarios Table 1 using both the baseline 
method [55] and our context-aware approach. Our evaluation has 
been done in two dimensions: spatial and temporal context aware-
ness. For assessing temporal context awareness, we quantifed the 
motion discontinuity between consecutive instructions. A height-
ened awareness of the temporal context by the AI should result in 
reduced discontinuities in the generated instructions. The motion 
distance across frames was computed following the [3]. We calcu-
late the transition distance, which calculates the joint distance of 
two transition frames. ∑ ∑ 1 

�temporal = | |������ − �� � ���� | |2, (3)|K ||J | 
� ∈K � ∈J 

where K is the set of the two consecutive indices of transition 
frames (����� , � � ���� ) ∈ N2, which is composed of the last frame of 
the previous action ����� and the frst of the next action �frst. The 
number of transitions is equal to substituting one from the number 
of instructions |K | = |A − 1|. J is the set of joints, containing the 
3D location of joints at the transition, �� ∗ ∈ R3 as elements. The 
human skeleton data we used has 22 joints |J | = 22 following the 
skeleton representation of the HumanML3D dataset. 

In terms of spatial context awareness, we gauged the proximity 
between the avatar and the object specifed in the instruction. The 
absence of spatial context often results in instructions that position 
the avatar at a considerable distance from the target object, poten-
tially leading to user confusion. We employed the mean Euclidean 
distance to measure the spatial alignment within the frames of 
interest. ∑ 1 � � 

�spatial = | |�� − �� | |2, (4)|T | 
� ∈T 

� � where � ,�� ∈ R2 indicates the 2D X, Y coordinates of the root � 
joint and target keypoint at the �-th frame, respectively. T is the 
set of frames that is spatially conditioned by target keypoint �� . 

Method Transition distance↓ (m) Absolute distance↓ (m) 

GMD 0.15 0.08 
Ours 0.03 0.09 

Table 2: Transition Distance is the comparison of the discon-
tinuity with and without temporal smoothing methods. The 
lower the better. Absolute distance is the average distance 
between the avatar and the key points. Distance under 0.1 m 
is considered as plausible motion [55] 

5.2 Procedure 
To evaluate our developed algorithm performance, we choose 10 
practical scenarios Table 1 commonly found in real-world tasks. 
These tasks have more than two instructions and are performed 
at varied locations covering our design space which makes them 
suitable for evaluating our algorithm and comparing it with the 
baseline. To get the instructions for the task, three authors indi-
vidually provided the task description to ChatGPT and noted the 
instructions. Then the authors discuss to fnalize the steps of the 
instructions. Additionally, one of them wears hololens to get the 
spatial context for the algorithms. After generating the text instruc-
tions, we input them into a Text-to-Motion generator, resulting 
in motion instructions. To evaluate our approach, we compared 
our motion instructions with those from the GMD[55], one of the 
state-of-the-art algorithms in Text-to-Motion generation. For a con-
sistent comparison, we kept the length of each instruction the same 
in 90 frames. 

5.3 Results and Analysis 
In this section, we detail the results of our preliminary evaluations. 
We highlight the transitional gap between two consecutive frames 
measured in meters (�). As illustrated in Table 2, our approach 
ensures smooth frame transitions. GMD [55] exhibits a transition 
distance of 0.15� when frames are simply concatenated. In con-
trast, our method substantially decreases this transition distance 
to 0.03� (� < 0.05), eliminating any motion discontinuity. Addi-
tionally, Table 2 showcases the spatial alignment. The distance is 
determined between the avatar’s center and the guided keypoint, 
assuming an avatar height of 175��. Our method produces results 
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closely aligned with GMD, generating plausible motion with an 
error margin under 0.1� (� < 0.05) [55], while also capable of pro-
ducing smooth and varied actions in one seamless operation. The 
Exercising task shows the highest spatial error because it contains 
the instruction to run, which represents the most sudden motion 
among all instructions. Meanwhile, the Starting a Computer task 
has the lowest error due to its fewer movements. We observed that 
the quality of hand motion generated by both GMD and our method 
is subpar. Instructions involving hand-object interactions especially 
exhibit awkward hand gestures. For instance, the pickup motion 
doesn’t adequately display grabbing gestures. 

6 User study 1: Usability 
We conducted a user study to qualitatively evaluate the usability 
of our system. We qualitatively evaluated all the steps used in our 
system as well as the quality of the human motion generation. 
We invited 12 users (10 males and 2 females) from the technical 
university. All of them have prior experience in AR/VR applications 
using tablets, AR screens, and head-mounted devices. CARING-AI 
is designed to help both experts and non-experts create human 
avatar motion. The users are from graduate and undergraduate 
programs and their age ranges from 19 to 30. None of the users 
have used our system and have had no knowledge about it before. 
The entire study took one hour - two hours and each user was 
compensated with a 15 USD e-gift card. The study was conducted 
in an indoor environment. After the user arrived, we provided a 
brief overview of the study. Then the users were asked to sign the 
consent form only when they were comfortable in performing the 
user study. After that, we explained the entire CARING-AI system 
workfow and each function in the UI. Out of 12 users, 5 users had 
prior experience with developing or using Hololens. The users were 
given enough time to get comfortable with the CARING-AI system 
before the study was ofcially started. Also, some of the users with 
no experience were provided with a built-in Hololens tutorial to 
learn the basics. As our study focus was on the usability of the 
system and user experience on the generated content, we asked 
the users to complete a System Usability Scale (SUS) and a 5-point 
scale Likert-type questionnaire followed by 20-minute post-session 
conversation-type interviews to provide subjective feedback about 
CARING-AI. 

6.1 Procedure 
We evaluated the performance of our system and let users generate 
avatar motions for the tasks Cutting an Apple. The study took 
place in a kitchen environment. The task was chosen because it 
involves multiple steps and diferent locations. The task is suitable 
for evaluating context-generated content and other system compo-
nents like interface. The users were tasked to generate step-by-step 
instructions for the task from ChatGPT. The most common steps 
found in the task as shown in Figure 10 are 

(1) Walking to the cut board (Global, Temporal and Spatial), 
(2) Pick up an apple on the table (Local, Temporal and Spatial), 
(3) Pick up the knife (Local, Temporal and Spatial), 
(4) Cut the apple (Local, Temporal and Spatial), 
(5) Put down the knife (Local, Temporal and Spatial), 
(6) Eat the apple (Local, Temporal), 

(7) Move back (Global, Temporal), 
(8) Turn around (Global, Temporal), 
(9) and Leave the kitchen (Global, Temporal and Spatial). 

Walking to the cutboard Pick up the apple Pick up the knife

Cut the apple Put down the knife Eat the apple

Figure 10: Examples of humanoid animation generated in 
User Study 1. 

Then the user scans the environment and takes the screenshots 
at diferent locations. After that user aligns the virtual objects on 
the real object if they are not properly aligned by the system. And 
fnally, the user uses the CARING-AI interface to generate the 
motions. 

6.2 Results and Analysis 
We analyzed responses to a 5-point scale Likert-type questionnaire, 
SUS, and transcribed the interview from the user. 

6.2.1 Textual Instructions. We qualitatively evaluate textual step-
by-step instruction generated from ChatGPT. In general, users pre-
ferred the step-by-step instructions generated from the ChatGPT 
to be relevant to the task. "P1: I think I don’t need to modify the in-
structions. They were correct and right for the task.". However, some 
users modifed a few steps little for their instructions. Many users 
acknowledge the visualization of a graph representation of step-by-
step instructions and agree that the interactions with the graph are 
easy to use and simple to follow (Q1: AVG = 4.08, SD = 1.00). "P5: 
The process of creating the instructions was easy and quick." 

6.2.2 Context Aware Instruction by Avatar. Through post-study 
interviews and designated Likert-scale questionnaires with the 
users, we qualitatively evaluate the context in the content generated 
by CARING-AI during the user study. Many of the users stated that 
the avatar was performing the actions with the object at the correct 
location (Q7: AVG = 4.42, SD = 0.51). As a piece of evidence, P3 
commented in the interview "P3: I was actually surprised by the way 
Avatar went to the exact position and performed the activity." Another 
user mentioned " P2: I liked that I could see the avatar move towards 
the apple and the fuid and connected motion". The majority of the 
users were satisfed by the actions performed by the avatar using 
the virtual objects (Q4: AVG = 4.25, SD = 0.97). As P9 commented 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Shi, Jain, Chi, et al. 

Figure 11: Likert-type questionnaire results from User Study 1. 

in the interview on "P9: The action demonstrated by the avatar was 
with the right object." However, a few users raised concerns about 
accurate avatar hand and virtual object interactions, such as P12 "P12: 
It is not clear to me why the hand was not grabbing the object and 
it automatically sticks to the hand." We discuss this limitation in 
more detail in section 9. Users acknowledge that the motion of the 
avatar from one place to another looks real (Q5: AVG = 3,58, SD 
= 1.31), such as P11 "P11: I can’t believe that the avatar movement 
exactly looks as if a real human is walking. I should say this is too 
cool." Users found a smooth transition of the avatar motion between 
the instructions (Q8: AVG = 4.67, SD = 0.49). P8 pointed out that 
the transition by our smoothing algorithm made the animations 
seamless and the breaks between animations hard to identify, "P8: 
It was hard for me to draw the boundary between the instructions 
when I was looking at the avatar motion." 

6.2.3 Overall System Usability and Utility. The overall system Lik-
ert scale results are shown in Figure 11. Context from the user is 
the foundation of our generated animation and most of the users 
were satisfed and comfortable with taking screenshots during the 
scanning of the environment process (Q6: AVG= 4.00, SD = 1.04), as 
P8 commented "P8: I didn’t fnd any difculty in moving around and 
taking screen pictures." Further, users also found the alignment of 
real and virtual objects was accurate. P4 commented that the accu-
rate alignment contributed to their overall experience "P4: I think 
the virtual model was approximately over the top of the real for many 
objects and the visualization being a 3D rendering defnitely helps 
my experience". The CARING-AI system interface was appreciated 
by the users. The positive feedback from the users on the usability 
of the interface is mainly attributed to the easiness of using it, as 
P2 commented: "P2: In my opinion, I fnd the UI very straightforward 

and easy to use." Moreover, users fnd it easy to switch between 
full-body pose and only hand (Q2: AVG= 4.08, SD = 1.00). The fnal 
avatar motion instruction generated from CARING-AI received a 
positive response from the user after watching the fnal generation 
of instructions (Q12: AVG= 4.42, SD = 0.51). 

Regarding utility, many users reported positive regarding uti-
lizing CARING-AI in creating AR instruction tutorials of human 
demonstration. P7 with previous experience of authoring AR in-
structions in Unity positively commented on the efciency when 
utilizing CARING-AI "P7: I have developed an AR instruction by 
coding in Unity and it took me several days to make it. I wish this 
thing was developed earlier so that I could have used it." Some users 
needed more features to display such as text, and icons for object 
movement directions along with just demonstrations, such as P9 
"P9: For the base level, it is okay but I think it would have been better 
if your system provided visual cues showing the movement of the 
object" We discuss the limitation in more detail in section 9. For the 
system usability, the users agree that the system is usable (SUS: M = 
83.21 out of 100 and SD = 7.34). A score above 70 is practically con-
sidered "Good" usability and an 85-and-beyond score is considered 
"excellent" as mentioned in [4, 5]. 

7 User Study 2: Interaction 
To evaluate the interaction design of our system compared wt 
the baseline programming by Demonstration, we conducted an 
additional within-subject comparative user study (N=12) between 
CARING-AI and a baseline PbD method. The purpose of this study is 
to assess the novel interaction proposed in CARING-AI and compare 
the user feedback on the interactions with that from the existing 
methods (PbD). To make a reasonable PbD baseline, we followed 
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a similar approach [102] and built our setup, where the humanoid 
animation is captured by a third-person-view RGB camera. 

The participants (8 males and 4 females) are six novices and six 
experts in developing AR applications. They were recruited and 
compensated as in User Study 1. Users were asked to author AR 
instructions with both CARING-AI and PbD, counterbalanced by 
6 participants authoring with CARING-AI frst followed by PbD, 
and the other 6 participants with PbD and then CARING-AI. The 
entire study took 1 to 2 hours. We followed the same protocol for 
explaining our system as in User Study 1. To quantitatively evaluate 
our system, We asked the users to fll out NASA TLX [85] and a 
fve-point Likert-type questionnaire (Figure 17). This questionnaire 
is designed to collect qualitative evaluations of the users on the 
efciency and accuracy of both authoring methods (Q2-5), as well 
as the quality of the fnal output (Q1). Additionally, a 15-minute 
semi-structured interview was conducted for each participant. In 
post-processing of the study data, we calculated error rates during 
interactions and time spent in creating animation. 

7.1 Procedure 
The user study was performed in a living room and users were 
asked to perform three tasks: organizing the living room, watering 
a plant, and hammering a nail to a door. We specifcally chose 
tasks that require human motion that can be guided by humanoid 
avatar animation in AR. Also, all chosen tasks involved hand-object 
interactions with diferent objects and took place at various global 
locations, which are: 

(1) Walk to the sofa. Place the water bottle on the sofa. Pick up 
the book. 
Walk to the chair. Put down the book on the chair. 

(2) Pick up the mug. Walk to the plant. Pour the water into the 
plant. 

(3) Walk to the door. Pick up the hammer. Hammer the nail on 
the door. 

With CARING-AI, the users frst scanned the environment by 
moving around and taking screenshots of the locations where local 
actions were to happen. After that, users aligned the virtual object 
with their real counterparts. Then, users generated the fnal ani-
mated instructions following the workfow of CARING-AI as in 
User Study 1. Until satisfed, the users could regenerate or adjust 
the animation with CARING-AI. The examples of generated AR 
animation with CARING-AI in this study are shown in Figure 12. 

With PbD, the users frst manually aligned the virtual objects 
with their real counterparts. Then, users wrote down the instruc-
tions for each task and performed the task in the environment. 
During this process, the user’s actions were recorded by four cam-
era setups, each capturing one global location in the tasks (sofa, 
chair, plant, and door). We followed prior work [48] to calibrate the 
camera setups and align them with the AR HMD to obtain accurate 
camera coordinates. The recorded videos are then passed into a 
video-to-3D algorithm [84] to convert the demonstrated motion 
into presentable 3D humanoid animation assets. To execute the 
video-to-3D algorithm, users are frst required to segment both the 
human and the object using the segmentation module from [60]. 
The users then situated the animation assets in AR with an HMD, 
by moving the assets to align with the physical environment. Until 

satisfed, the users could redo the tasks and adjust the animation 
assets. The examples of generated AR animation with PbD in this 
study are shown in Figure 13. 

For fair comparison of the avatar quality, both PbD and CARING-
AI used the full SMPL-X [90] model as the humanoid avatars as 
shown in Figure 12 and Figure 13 (c)-1. 

7.2 Results and Analysis 
We obtained the data from the user study, including (1) the Error 
Rates (We manually counted the number of times each user modifed 
the instruction, re-performed a task, or re-adjusted the animation 
assets), (2) the time performance in minutes taken by each user to 
complete the authoring tasks, and (3) NASA TLX scores. We then 
confrmed if the normality assumption is followed in each collected 
data group with a Shapiro-Wilk test, followed by a paired t-test if 
normally distributed, or a Wilcoxon Signed-Rank test otherwise. 
We then analyzed and discussed the results as follows. 

7.2.1 Task Load: CARING-AI v.s. PbD. Since only data from Efort 
scores are normally distributed in both PbD and CARING-AI setups 
(���� = 0.051, ����� = 0.159, henceforth, we conducted paired 
t-tests for Efort and Wilcoxon Signed-Rank tests for the rest, as 
shown in Figure 14. The results showed that users experienced 
signifcantly less Mental Demand with CARING-AI (����� = 2.666, 
������ = 0.651, ���� = 3.250, ����� = 0.965, � = 0.025,� = 
−2.242) compared to PbD. Also, users reported signifcantly higher 
Physical Demand (����� = 2.416, ������ = 0.514, ���� = 3.333, 
����� = 1.073, � = 0.046, � = −2.001) in PbD than in CARING-AI. 
The less Mental Demand with CARING-AI can be attributed to a 
shorter workfow with no consideration of the camera position 
(as we will also discuss in the next subsubsection), while the less 
Physical Demand with CARING-AI can be attributed to the physical 
easiness of creating animation with only text instructions compared 
to that of demonstrating the actions to the cameras. Additionally, 
users felt more confdent in their performance in completing tasks 
with CARING-AI (����� = 3.833,������ = 0.834,���� = 2.916, 
����� = 0.996,� = 0.026,� = −2.222). The better performance 
scores can relate to the less Error Rates and shorter task time in 
the next subsubsection. No signifcant diferences were observed 
in Temporal Demand (� = −0.560,� = 14 > ��������� = 3) or 
Frustration (� = −0.280,� = 16 > ��������� = 3) between the two 
systems. 

7.2.2 Error Rate and Time Performance. The collected data was nor-
mally distributed in both Error Rate (���� = 0.515, ����� = 0.242) 
and Time Performance (���� = 0.487, ����� = 0.987). The reported 
Error Rates were high in PbD as compared to CARING-AI as shown 
in Figure 16 (� = 0.034). During the study, we mainly observed 
that some participants re-did the tasks with PbD multiple times 
because the cameras had been occluded from a proper view to gen-
erate accurate animation. In practical scenarios, this problem can 
worsen since the camera setup has to be relocated and re-calibrated 
to tackle the occlusion problem of PbD authoring. Redoing the 
demonstration also added much more mental and physical demand 
as we showed in the NASA TLX results. For the total time taken, 
users fnished all tasks quicker with CARING-AI compared to PbD 
(� = 0.001). This was because performing the actions took longer as 
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Figure 12: AR animation generated by users using CARING-AI in User Study 2. 

Figure 13: AR animation generated by users using our PbD baselines in User Study 2. (a) users demonstrating the task, (b) the 
generated 3D animation assets from the camera captures, and (c) the users viewing and adjusting the 3D animation assets with 
the AR HMD. The diferences between the assets in (b) and (c) are due to rendering methods. 

Figure 14: NASA TLX Scores, where * denotes � < 0.05 

compared to adjusting the text or the animation itself. Also, more 
Error Rates meant more numbers of times re-demonstrating. 

7.2.3 Subjective Ratings. We analyzed the questionnaire results 
from users’ feedback and conducted interviews with the partici-
pants (Figure 17). After confrming the normality of the rating data, 
we further performed paired t-tests to check the signifcance of 

Figure 15: Average Error Rates Calculated in User Study 2, 
with CARING-AI and PbD 

the comparison. Users preferred the quality of the fnal animation 
instruction generated from CARING-AI(Q1: � < 0.05), as P7 com-
mented in the interview "I like the overall animation quality from 
the frst system (Ours)" (P7). Users found editing animation through 
text much easier than demonstrating (Q4 � < 0.05). "When I create 
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Figure 16: Average Time Spent in Authoring Task, with 
CARING-AI and PbD 

the instruction and I don’t like it, I would prefer some easier way to 
edit like the second system (Ours) than performing the task again" 
(P2). This aligns with the results from NASA TLX and quantitative 
evaluations. The easiness of authoring with CARING-AI can also be 
attributed to the smoother learning curve of text-to-animation mod-
els as compared to PbD or demonstration-to-animation methods 
as pointed out in [113]. Users reported better feedback regarding 
hand-object rendering in CARING-AI (Q5 � < 0.05) as compared to 
PbD, attributed to the error in detecting hand-object interaction in 
PbD, which results in the degenerated user experience as described 
by P3 "I don’t know but the hand was not actually grabbing the object 
in the frst system (PbD) but in the second system It was much better" 
(P3). The quality of hand-object rendering was partially infuenced 
by the occlusion during the study. Also, the rendered interactions 
in PbD were not situated in the environment correctly, and users 
reported that they had adjusted the animations more in the fnal 
stage. We found no signifcant diference in controlling the avatar 
(Q2) and editing the textual instruction (Q3). 

8 Discussion 

8.1 Contextual Awareness in CARING-AI 
Context plays a vital role in AR applications [121]. Despite the 
potential of Gen-AI in creating 3D content [118], a key limitation 
lies in its lack of contextual awareness in AR as identifed in the 
preliminary study. One of the core design goals of CARING-AI 
is to bring context awareness to AI-generated humanoid avatar 
instructions in AR. With the evaluation of the CARING-AI (sec-
tion 6 and section 5), we look back at the conclusion drawn in 
the preliminary study and seek the reason why context-awareness 
is necessary in AR instruction, i.e., What does context-awareness 
bring to AR instructions? We highlighted how users in the study 
emphasized the importance of precise positioning and action per-
formance in humanoid avatar animations (subsubsection 6.2.2) and 
demonstrated how CARING-AI efectively addressed the need for 
accuracy in both positioning and animation. Our fndings indicate 
that users, as the authors of the instructions, they are aware of the 
context. The actions that they intend or anticipate the receivers of 
the instructions to take are based on the context, i.e., the authors 
give instructions based on the context. "P3: When I wanna instruct 
somebody to do something, I want them to know exactly the objects 
and actions. This is very important when in a complex task where 
students can pick the wrong stuf and act anyway and make mistakes." 
The author’s context-awareness is the essence of instructions, as 

many prior works pointed out as "the prior to function as an in-
struction" [127] or "the fexibility and accommodation to external 
constraints for designing an instruction" [82]. In short, there are 
specifc "where" and "what" the authors intend to convey in the 
instructions. By preserving and representing the author’s context 
awareness, CARING-AI enables the core functions of instructions, 
which were previously missing in AI-generated humanoid avatar 
animation. 

8.2 CARING-AI Excels in Instructing: How? 
Given the capability of CARING-AI preserving and representing 
context-awareness in AI-generated humanoid avatar animation. 
We have witnessed the preference and positive ratings of the users 
for both our full-body avatar and hand-object avatar animation. Yet, 
we noticed some comments from the users addressing the necessity 
of using humanoid avatar instructions in some scenarios. Some 
users mentioned inconvenience brought by the use of humanoid 
avatars. "P8: The avatar moving backward was not visible to me. 
When the movement [of the avatar] is out of my vision, I think there 
are better ways to tell me to look at the avatar or tell me what to 
do." In addition to "where" and "what", "how" the instructions can 
be conveyed to the users is also important. As discovered in prior 
works [13, 46], in AR tutoring, learners prefer half-body avatars 
for spatial interactions (interactions that require large spatial navi-
gation before proceeding), full-body avatars for body-coordinated 
interactions (interactions that require coordination among learners’ 
body, hands, and eyes). We further bring hand-object avatars for lo-
cal interactions in CARING-AI. CARING AI changes form of avatar 
based on scale of the task. However, some of the users mentioned 
that avatar forms should be based on designation and details of the 
actions. Furthermore, as AR instructions are not limited to the form 
of humanoid avatars, we conclude that non-avatar AR can also be 
included in the CARING-AI pipeline as a means of visualization. 
As P8 commented, non-avatar AR instructions excel avatar instruc-
tions in the cases where no particular body gesture is required or 
the visualization of humanoid avatars is not visible to the users. 
This conclusion highly aligns with the fndings of prior study [13]. 

8.3 Other Modalities of AI-generated 
Instructions 

Humanoid avatar motion along with additional cues helps in learn-
ing content [46]. As previously discussed, to further develop CARING-
AI into a comprehensive AR instruction system, we envisioned fu-
ture versions with other AI-generated modalities such as (1) visual 
cues [67, 70], e.g. arrows, bounding boxes, lines, etc., (2) contextual-
ized textual instructions [18], (3) images [72, 94], (4) audio [74], and 
(5) videos [31]. We argue that our design space of AR instructions 
and the pipeline of CARING-AI apply to the other modalities of AR 
cues and instructions as well, since the spatial locations/placements, 
as well as the temporality of the cues, are key design considerations 
in the prior works referenced above, and can be situated through 
CARING-AI’s pipeline, where the authors walk through the context 
and assign the cues by taking contextual snapshots. 
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Figure 17: Subjective Likert-scale Ratings of the easiness, animation quality, and interactions of CARING-AI and PbD 

8.4 Authoring with CARING-AI v.s. PbD 
Authoring by real-time demonstration or embodied often requires 
bulky hardware setup, which limits the mobility of the end-users 
due to the size of the devices [121]. In our User Study 2, a camera 
setup has to be built for the baseline PbD method, while CARING-
AI does not require complex hardware setup and allows users to 
create instructions without programming knowledge and physical 
presence. CARING-AI can help users generate instructions even at 
remote locations without performing the actions and movements 
(subsection A.3). As P7 commented on the efciency in creating AR 
instructions "this system, I think, can become very efective in creating 
remote instructing like without even physically present.". Instructions 
from PbD are also tied to the environment or context in which 
users performed demonstrations to create the content. On the other 
hand, instructions generated from CARING-AI can be efectively 
adapted to various environments settings because of context-aware 
modeling, concluded from our observations of the user feedback 
on the quality of the generated content as shown in Figure 17. As 
the results suggest, the CARING-AI pipeline performs better than 
PbD in generating instructions with fewer mistakes and faster and 
with less cognitive load. 

9 Limitations, and Future Work 
In this section, we discuss the limitations of CARING-AI identifed 
from development, user study, and the analysis of the study pro-
cess. Deriving from such, we propose future directions that can 
contribute to the topic of GenAI in AR instructions. 

9.1 Object Representation and Interactions 
One of the limitations of CARING-AI lies in its ability to handle 
complex hand-object interactions. We apply an additional module to 
render hand-object interactions, which focuses solely on visualizing 
the hand and object rather than the entire body. However, this 
module tackles only rigid objects and does not render high-fdelity 

hand-object interaction, particularly limiting the use cases requiring 
complexity and dexterity in manual tasks. Complex interactions 
involve hands engaging with objects that are articulated, segmented, 
foldable, or deformable, whereas the objects in our system are 
strictly rigid. Thus, the system cannot represent actions that involve 
changing the shape or form of an object such as tying a shoelace or 
folding a cloth. Nevertheless, such constraints are attributed to the 
limitation of the Gen-AI algorithms applied in the pipeline, while 
the overall workfow of CARING-AI remains efective in capturing 
and presenting the context information to the generated content. 
While algorithmic development remains relatively unexplored in 
the AI feld, we foresee this limitation can be addressed in future 
work by incorporating more generalized state-of-the-art algorithms 
and datasets, such as those introduced in [30, 75, 134], to enable high 
fdelity rendering of hand-object interactions in AR instruction. 

Lastly, CARING-AI currently does not support object-object in-
teractions. This limitation stems from the aforementioned chal-
lenges in hand pose plausibility and rigid object representations. 
Without the ability to depict detailed hand-object interactions and 
object articulations, representing interactions between multiple 
objects becomes unfeasible. However, we believe that exploring 
object-object interactions ofers a promising direction for future re-
search, providing a richer and more comprehensive understanding 
of interactions in virtual environments. 

9.2 Generalizability 
Like all other deep-learning-based methodologies, the performance 
of our motion generation model is subject to the training pro-
cess [52, 53]. Nevertheless, the model we used has been pre-trained 
on a large-scale motion dataset [39] containing 14,616 motions and 
44,970 descriptions composed of 5,371 distinct words, which fulflls 
the requirement for our use cases and study. In our study, we em-
phasize the HCI design and the workfow bridging AR applications 
and Gen-AI, rather than contributing to the existing algorithms 
of Gen-AI by trying to outperform them. To this end, we further 
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argue that the generalizability (more types) and scalability (more 
detailed motion) of this method are promising. Firstly, prior works 
have demonstrated the capabilities of large generative models on 
large-scale datasets [103]. We envision the scale of this method 
will be further improved upon datasets with wider ranges of action 
labels being fed into the Gen-AI model (e.g. task-specifc motion 
datasets in each domain). Secondly, the size and complexity of the 
model in our implementation are constrained by our hardware 
condition, particularly the GPU sizes. With a better (empirically 
more complex) model, we expect the quality and the details of the 
generated content to improve. 

Put simply, our methodology focuses on the HCI design for 
AIGC in AR, maintains its applicability with the current ideology 
of Gen-AI, and is generalizable as long as the plugged-in Gen-AI is 
generalizable. 

In addition to the generalizability of the algorithm, we also ac-
knowledge that the fndings of the formative studies are derived 
from academic researchers, which could be further refned and 
expanded with diverse perspectives from industrial practitioners. 
Moreover, the avatars used in our paper are sex-neutral, however, 
unclothed human avatar representations from [90], which can be 
replaced with inclusive and realistically rendered avatars for more 
user-friendly and family-friendly use. 

9.3 Software and Hardware Constraints 
One of the major constraints imposed by our hardware condition 
is the time performance. It has been reported in subsection 4.6 
that generating a batch of motion takes 36 seconds (i.e. anything 
between 1 and the batch size takes 36 seconds). Even though 36 
seconds of latency seems beyond the cost of real-time performance, 
batch processing guarantees that users can render their desired 
avatar instructions once altogether, given a batch size of 128 in 
our setup, which is, in all cases of our study, more than the users’ 
expectation of the number of interactions in the demonstration. 
Moreover, to address this problem of computational cost in the 
future, we anticipate methodologies such as utilizing cloud services 
for data transferring and computation, parallel programming for 
the generation, and usage of better GPUs (high computational). 

Another one of our hardware constraints comes from our im-
plementation platform, Hololens 2. With a feld of view (FOV) of 
(43°×29°), users cannot experience a fully immersive AR environ-
ment as content might not be visible outside this boxed area. For 
AR authoring and consuming, this poses a challenge. Users have to 
be acutely aware of this constraint to ensure that critical interactive 
elements or information are positioned within this limited space. 
Under the circumstances when the humanoid avatar is close to the 
users, motion outside the FOV is not visible. This problem may 
not infuence the quality of the generated content itself but induce 
biases in the evaluation of the user study, such as more negative 
feedback due to the jeopardized user experience. 

10 Conclusion 
In this work, we present CARING-AI, an AR authoring system 
that enables users to author AR instructions with contextualized 
humanoid avatar movement generated by Gen-AI. We frst dis-
cussed with experts in AR authoring in a preliminary interview, 

aiming to identify the gap between current AI-generated humanoid 
avatars and AR instruction applications. Based on the insights 
gained from the discussion, we further characterized the design 
space for context-aware AR instructions from AI-generated con-
tent with two dimensions, namely context (spatial or temporal) and 
content (local or global). We then proposed a workfow for contex-
tualizing AI-generated AR instruction with three major steps: (1) 
generating and modifying textual instructions, (2) contextualizing 
by traversing and scanning the environment, and (3) generating and 
smoothing humanoid avatar animation. We further showcased three 
application scenarios for authoring AR instructions with CARING-
AI: asynchronous, remote, and ad hoc instruction. We evaluated the 
performance of CARING-AI with a preliminary quantitative evalua-
tion focusing on the model performance and the quality of the AIGC, 
followed by a user study evaluating the qualitative performance 
and overall usability of CARING-AI as an AR authoring system 
through complimentary qualitative user feedback. Eventually, we 
discuss the limitations of the current version of CARING-AI and 
further envision the opportunities and promising future research 
directions our work has revealed. We believe our work is capable 
of opening up and contributing to the discussion of the broad topic 
of AIGC in AR applications. 
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on Engagement and Performance in Augmented Reality Learning Environments. 
IEEE Transactions on Visualization and Computer Graphics 28, 11 (2022), 3737– 
3747. 

[126] Florian Weidner, Gerd Boettcher, Stephanie Arevalo Arboleda, Chenyao Diao, 
Luljeta Sinani, Christian Kunert, Christoph Gerhardt, Wolfgang Broll, and 
Alexander Raake. 2023. A Systematic Review on the Visualization of Avatars and 
Agents in AR & VR displayed using Head-Mounted Displays. IEEE Transactions 
on Visualization and Computer Graphics (2023). 

[127] AndrÉ M Weitzenhofer. 1974. When is an “instruction” an “instruction”? 
International Journal of Clinical and Experimental Hypnosis 22, 3 (1974), 258– 
269. 

[128] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry 
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. 
A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv 
preprint arXiv:2302.11382 (2023). 

[129] Hui Ye and Hongbo Fu. 2022. ProGesAR: Mobile AR Prototyping for Proxemic 
and Gestural Interactions with Real-world IoT Enhanced Spaces. In Proceedings 
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–14. 

[130] Hui Ye, Jiaye Leng, Chufeng Xiao, Lili Wang, and Hongbo Fu. 2023. ProObjAR: 
Prototyping Spatially-aware Interactions of Smart Objects with AR-HMD. In 
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. 
1–15. 

[131] Xuyue Yin, Xiumin Fan, Wenmin Zhu, and Rui Liu. 2018. Synchronous AR as-
sembly assistance and monitoring system based on ego-centric vision. Assembly 
Automation 39, 1 (2018), 1–16. 

[132] Kyongsik Yun, Thomas Lu, and Edward Chow. 2018. Occluded object recon-
struction for frst responders with augmented reality glasses using conditional 
generative adversarial networks. In Pattern Recognition and Tracking XXIX, 
Vol. 10649. SPIE, 225–231. 

[133] Zhenjie Zhao and Xiaojuan Ma. 2018. A Compensation Method of Two-Stage 
Image Generation for Human-AI Collaborated In-Situ Fashion Design in Aug-
mented Reality Environment. In 2018 IEEE International Conference on Artifcial 
Intelligence and Virtual Reality (AIVR). 76–83. https://doi.org/10.1109/AIVR. 
2018.00018 

[134] Juntian Zheng, Qingyuan Zheng, Lixing Fang, Yun Liu, and Li Yi. 2023. CAMS: 
CAnonicalized Manipulation Spaces for Category-Level Functional Hand-Object 
Manipulation Synthesis. In Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition. 585–594. 

[135] Zhengzhe Zhu, Ziyi Liu, Youyou Zhang, Lijun Zhu, Joey Huang, Ana M Vil-
lanueva, Xun Qian, Kylie Peppler, and Karthik Ramani. 2023. LearnIoTVR: An 
End-to-End Virtual Reality Environment Providing Authentic Learning Experi-
ences for Internet of Things. In Proceedings of the 2023 CHI Conference on Human 
Factors in Computing Systems. 1–17. 

https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://doi.org/10.1007/978-3-031-27166-3_1
https://arxiv.org/abs/1503.03585
https://unity.com/
https://unity.com/
https://doi.org/10.1109/AIVR.2018.00018
https://doi.org/10.1109/AIVR.2018.00018


CARING-AI CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

A Application Scenario 
With CARING-AI, users are enabled to author context-aware hu-
manoid avatar animation for AR instructions that can be adaptively 
deployed into various application scenarios (AS). Our primary goal 
of presenting the AS is to demonstrate that CARING-AI can cap-
ture and convey context information identifed in design space. 
Specifcally, we showcase three major scenarios where CARING-AI 
demonstrates its ability to grant code-less and Mocap-free author-
ing (AS-1, AS-2, and AS-3), create content that is to be deployed 
in diferent time primitives or via diferent platforms (AS-1, AS-3), 
and adapt to varying contexts (AS-2). 

A.1 AS-1: Asynchronous Instructions 

Figure 18: CARING-AI for authoring asynchronous Instruc-
tions. A senior lab researcher (a) leaves an AR memo for 
his colleague on how to use a 3D printer. He simply walks 
around the printing lab using CARING-AI to contextualize 
the textual instructions, capturing the location of the PVA 
flament and the printer. (b) The corresponding humanoid 
animation is generated according to the step-by-step instruc-
tions. CARING-AI is capable of handling AR instructions 
of diverse content and context, namely spatial or temporal 
context, and local or global content. 

Asynchronous instructions are the most common case in the ap-
plications of AR instructions, where the authors create the content 
prior to the consumption of the AR experiences [18, 22]. CARING-
AI naturally supports asynchronous instructions and situates AI-
generated humanoid avatar animation into the physical world con-
textually. Here, we showcase a scenario in a research lab, where 
a senior researcher (Tom, the author) would like to leave an AR 
memo for his junior colleague (Jerry, the consumer) to instruct him 
on how to operate a 3D printer. Tom creates and modifes the text 
instructions with the help of CARING-AI, then provides context to 
the system by walking up to the locations and taking snapshots of 
the environment as shown in Figure 18. He informs Jerry to get the 
printing materials and then go to a specifc 3D printer to print a 
product. Later, when Jerry arrives in the laboratory, he follows the 
step-by-step AR memo from Tom to start working on the product. 

Figure 19: CARING-AI for Ad Hoc AR Instructions. For the 
same task (e.g. installing a router), the instructions vary 
across diverse contexts. By using CARING-AI, users simply 
need to scan the environment to provide contextual infor-
mation to the system. CARING-AI will generate humanoid 
avatar animation that blends into diferent physical realities. 

A.2 AS-2: Ad Hoc Instruction Creation 
CARING-AI enables authoring AR instructions through Gen-AI 
by contextualizing the instructions. In this scenario, we showcase 
how CARING-AI enables authoring ad hoc instructions in changing 
contexts with simplifed user interactions. As a technician from 
the lab, Tom would like to teach his colleague how to install a 
router as shown in Figure 19. The instructions are fairly simple and 
easy to understand. However, the detail of the steps varies across 
environments, e.g. in the ofce, the bedroom, or the living room, 
because the locations of the router and the outlet vary. With the 
same protocol to be visualized, Tom simply has to contextualize the 
protocol in diferent places, assigning the locations of the objects 
by traversing the rooms. As a result, Tom authors diferent avatar 
animations for diverse contexts with the same instruction protocol. 

Place B: Perceiving Instructions in AR

(a) (b)

(c) (d)

(e)
Place A: Contextualizing Instructions in VR

Figure 20: CARING-AI’s capability of authoring Remote In-
structions. In this scenario, a delivery man is asking for the 
destinations of the packages. (a) A lab member is giving con-
textual information through a pre-scanned scenario in VR. 
(b) We built a mock-up VR scenario to record the locations 
and correspond them back into the physical reality. Once the 
instructions are contextualized, the delivery man can view 
the humanoid instructions on delivering the packages (c, d). 
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Figure 21: We showcase more examples of humanoid animation generated from our backend algorithm. Specifcally, the 
animations generated are guided by a textual description of the motion, rendered with humanoid avatars (in our implementation, 
SMPL [90]). Each animation clip presents a short sequence of human motion and represents a step in a given AR instruction. 

A.3 AS-3: Remote Instructions 
In this scenario, CARING-AI is deployed in a remote instruction task. 
We showcased how CARING-AI can adapt to context information 
of diverse modalities and liberate the authors from demonstrating 
in the actual physical environment. Toodles, the deliverywoman of 
the building, arrives in the lab with new devices to be allocated Fig-
ure 20 (c). Noticing no one is in the lab, Toodles contacts Jerry, 
asking about the allocation of the devices. Jerry, who is not present 
at the lab, confrms the devices and their checkout points (i.e. where 
they are to be placed). Jerry then enters a pre-scanned point-cloud 
map of the lab in Virtual Reality (VR), where he authors the instruc-
tions in VR using CARING-AI by navigating the map and taking 
screenshots Figure 20 (a, b) (We built a mock-up VR program to 
record Jerry’s locations in VR and correspond them to the physi-
cal reality). CARING-AI generates humanoid avatar instructions 
according to the contextual information provided. The authored 
AR instructions are then sent to Toodles, who follows the avatar 
demonstrations to allocate the devices to diferent locations Fig-
ure 20 (d, e). In this case, we see that CARING-AI is capable of 

authoring synchronous remote instructions. It also showcases the 
possibilities of authoring AR experiences in VR with CARING-AI 
with aligned contextual information between physical reality and 
VR. The alignment of context is subsumed here as described and 
inspired by many prior works [86, 93, 124] 

B More Generated Examples 
In this section, we showcase more examples generated from our 
backend difusion model as shown in Figure 21 and situated hu-
manoid animation by CARING-AI through our pipeline as shown 
in Figure 22. Given a textual prompt, our motion difusion model 
can generate high-fdelity humanoid avatar motion. With the user-
provided context, specifcally object location and motion trajectory, 
the CARING-AI system can situate the generated animations in the 
space and temporally smooth them for a seamless user experience. 
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Figure 22: We showcase more examples of humanoid animation contextualized by CARING-AI, (a) Walk to the chair and 
sit down, (b) Walk to the sink, lean in, and wash hands thoroughly, and (c) do a a sloppy cartwheel around the chair. All 
animations are generated by prompting the CARING-AI with text, scanning the environment to mark the object, and passing 
user trajectories to the generative model. 
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